
Docu Documentation
Release 0.28.2

Andrey Mikhaylenko

January 15, 2013

CONTENTS

1 Installation 3

2 Tutorial 5
2.1 What does Doqu do? . 5
2.2 Why document-oriented? . 5
2.3 Why not just use the library X for database Y? . 5
2.4 What are “backends”? . 5
2.5 Switching backends . 6
2.6 A few words on what a model is . 6
2.7 Working with documents . 7
2.8 More questions? . 8
2.9 Inheritance . 9
2.10 Model is a query, not a container . 10

3 Glossary 13

4 Validators 15

5 Utilities 19

6 Extensions 21
6.1 Database backends . 21
6.2 Convenience abstractions . 24
6.3 Integration with other libraries . 25

7 API reference 27
7.1 Document API . 27
7.2 Document Fields . 28
7.3 Backend API . 30

8 Indices and tables 35

9 Author 37

10 Licensing 39

Python Module Index 41

i

ii

Docu Documentation, Release 0.28.2

Doqu is a lightweight Python framework for document databases. It provides a uniform API for modeling, validation
and queries across various kinds of storages.

It is not an ORM as it doesn’t map existing schemata to Python objects. Instead, it lets you define schemata on a higher
layer built upon a schema-less storage (key/value or document-oriented). You define models as a valuable subset of
the whole database and work with only certain parts of existing entities – the parts you need.

Topics:

CONTENTS 1

Docu Documentation, Release 0.28.2

2 CONTENTS

CHAPTER

ONE

INSTALLATION

As easy as it can be:

$ pip install doqu

Another way is to use the Mercurial repo:

$ hg clone http://bitbucket.org/neithere/doqu
$ cd doqu
$./setup.py install

You may also need to install some other libraries (see Extensions).

3

Docu Documentation, Release 0.28.2

4 Chapter 1. Installation

CHAPTER

TWO

TUTORIAL

Warning: this document must be rewritten from scratch

2.1 What does Doqu do?

2.2 Why document-oriented?

2.3 Why not just use the library X for database Y?

Native Python bindings exist for most databases. It is preferable to use a dedicated library if you are absolutely sure
that your code will never be used with another database. But there are two common use cases when Doqu is much
more preferable:

1. prototyping: if you are unsure about which database fits your requirements best and wish to test various
databases against your code, just write your code with Doqu and then try switching backends to see which
performs best. Then optimize the code for it.

2. reusing the code: if you expect the module to be plugged into an application with unpredictable settings, use
Doqu.

Of course we are talking about document databases. For relational databases you would use an ORM.

2.4 What are “backends”?

Warning: this section is out of date

Docu can be used with a multitude of databases providing a uniform API for retrieving, storing, removing and search-
ing of records. To couple Docu with a database, a storage/query backend is needed.

A “backend” is a module that provides two classes: Storage and Query. Both must conform to the basic specifications
(see basic specs below). Backends may not be able to implement all default methods; they may also provide some
extra methods.

The Storage class is an interface for the database. It allows to add, read, create and update records by primary keys.
You will not use this class directly in your code.

5

Docu Documentation, Release 0.28.2

The Query class is what you will talk to when filtering objects of a model. There are no constraints on how the search
conditions should be represented. This is likely to cause some problems when you switch from one backend to another.
Some guidlines will be probably defined to address the issue of portability. For now we try to ensure that all default
backends share the conventions defined by the Tokyo Tyrant backend.

2.5 Switching backends

Warning: this section is out of date

Let’s assume we have a Tokyo Cabinet database. You can choose the TC backend to use the DB file directly or access
the same file through the manager. The first option is great for development and some other cases where you would use
SQLite; the second option is important for most production environments where multiple connections are expected.
The good news is that there’s no more import and export, dump/load sequences, create/alter/drop and friends. Having
tested the application against the database storage.tct with Cabinet backend, just run ttserver storage.tct and switch
the backend config.

Let’s create our application:

import docu
import settings
from models import Country, Person

storage = docu.get_storage(settings.DATABASE)

print Person.objects(storage) # prints all Person objects from DB

Now define settings for both backends (settings.py):

direct access to the database (simple, not scalable)
TOKYO_CABINET_DATABASE = {

’backend’: ’docu.ext.tokyo_cabinet’,
’kind’: ’TABLE’,
’path’: ’storage.tct’,

}

access through the Tyrant manager (needs daemon, scalable)
TOKYO_TYRANT_DATABASE = {

’backend’: ’docu.ext.tokyo_tyrant’,
’host’: ’localhost’,
’port’: 1978,

}

this is the *only* line you need to change in order to change the backend
DATABASE = TOKYO_CABINET_DATABASE

2.6 A few words on what a model is

Warning: this section is out of date

First off, what is a model? Well, it’s something that represents an object. The object can be stored in a database. We
can fetch it from there, modify and push back.

6 Chapter 2. Tutorial

Docu Documentation, Release 0.28.2

How is a model different from a Python dictionary then? Easy. Dictionaries know nothing about where the data came
from, what parts of it are important for us, how the values should be converted to and fro, and how should the data be
validated before it is stored somewhere. A model of an apple does know what properties should an object have to be
a Proper Apple; what can be done the apple so that it does not stop being a Proper Apple; and where does the apple
belong so it won’t be in the way when it isn’t needed anymore.

In other words, the model is an answer to questions what, where and how about a document. And a dictionary is a
document (or, more precisely, a simple representation of the document in given environment).

2.7 Working with documents

Warning: this section is out of date

A document is basically a “dictionary on steroids”. Let’s create a document:

>>> from docu import *
>>> document = Document(foo=123, bar=’baz’)
>>> document[’foo’]
123
>>> document[’foo’] = 456

Well, any dictionary can do that. But wait:

>>> db = get_db(backend=’docu.ext.shove’)
>>> document.save(db)
’new-primary-key’
>>> Document.objects(db)
[<Document: instance>]
>>> fetched = Document.objects(db)[0]
>>> document == fetched
True
>>> fetched[’bar’]
’baz’

Aha, so Document supports persistence! Nice. By the way, how about some syntactic sugar? Here:

class MyDoc(Document):
use_dot_notation = True

That’s the same good old Document but with “dot notation” switched on. It allows access to keys with __getattr__
as well as with __getitem__:

>>> my_doc = MyDoc(foo=123)
>>> my_doc.foo
123

Of course this will only work with alphanumeric keys.

Now let’s say we are going to make a little address book. We don’t want any “foo” or “bar, just the relevant information.
And the “foo” key should not be allowed in such documents. Can we restrict the structure to certain keys and data
types? Let’s see:

class Person(Document):
structure = {’name’: unicode, ’email’: unicode}

Great, now the names and values are controlled. The document will raise an exception when someone, say, attempts
to put a number instead of the email.

2.7. Working with documents 7

Docu Documentation, Release 0.28.2

Note: Any built-in type will do; some classes are also accepted (like datetime.date et al). Even Document instances
are accepted: they are interpreted as references. The exact set of supported types and classes is defined per storage
backend because the data must be (de)serialized. It is possible to register custom converters in runtime.

(Note that the values can be None.) But what if we need to mark some fields as required? Or what if the email is
indeed a unicode string but its content has nothing to do with RFC 5322? We need to prevent malformed data from
being saved into the database. That’s the daily job for validators:

from docu.validators import *

class Person(Document):
structure = {

’name’: unicode,
’email’: unicode,

}
validators = {

’name’: [required()],
’email’: [optional(), email()],

}

This will only allow correct data into the storage.

Note: At this point you may ask why are the definitions so verbose. Why not Field classes à la Django? Well, they
can be added on top of what’s described here. Actually Docu ships with Document Fields so you can easily write:

class Person(Document):
name = Field(unicode, required=True)
email = EmailField() # this class is not implemented but can be

Why isn’t this approach used by default? Well, it turned out that such classes introduce more problems than they
solve. Too much magic, you know. Also, they quickly become a name + clutter thing. Compact but unreadable. So we
adopted the MongoKit approach, i.e. semantic grouping of attributes. And — guess what? — the document classes
became much easier to understand. Despite the definitions are a bit longer. And remember, it is always possible to
add syntax sugar, but it’s usually extremely hard to remove it.

And now, surprise: validators do an extra favour for us! Look:

XXX an example of query; previously defined documents are not shown because
records are filtered by validators

2.8 More questions?

If you can’t find the answer to your questions on Docu in the documentation, feel free to ask in the discussion group.

———— XXXXXXXXXX The part below is outdated —————-

The Document behaves Let’s observe the object thoroughly and conclude that colour is an important distinctive feature
of this... um, sort of thing:

class Thing(Document):
structure = {

’colour’: unicode
}

8 Chapter 2. Tutorial

http://groups.google.com/group/docu-users

Docu Documentation, Release 0.28.2

Great, now that’s a model. It recognizes a property as significant. Now we can compare, search and distinguish objects
by colour (and its presence or lack). Obviously, if colour is an applicable property for an object, then it belongs to this
model.

A more complete example which will look familiar to those who had ever used an ORM (e.g. the Django one):

import datetime
from docu import *

class Country(Document):
structure = {

’name’: unicode # any Python type; default is unicode
}
validators = {

’type’: [AnyOf([’country’])]
}

def __unicode__(self):
return self[’name’]

class Person(Document):
structure = {

’first_name’: unicode,
’last_name’: unicode,
’gender’: unicode,
’birth_date’: datetime.date,
’birth_place’: Country, # reference to another model

}
validators = {

’first_name’: [required()],
’last_name’: [required()],

}
use_dot_notation = True

def __unicode__(self):
return u’{first_name} {last_name}’.format(**self)

@property
def age(self):

return (datetime.datetime.now().date() - self.birth_date).days / 365

The interesting part is the Meta subclass. It contains a must_have attribute which actually binds the model to a subset
of data in the storage. {’first_name__exists’: True} states that a data row/document/... must have the
field first_name defined (not necessarily non-empty). You can easily define any other query conditions (currently with
respect to the backend’s syntax but we hope to unify things). When you create an empty model instance, it will have
all the “must haves” pre-filled if they are not complex lookups (e.g. Country will have its type set to True, but we
cannot do that with Person‘s constraints).

2.9 Inheritance

Warning: this section is out of date

Let’s define another model:

2.9. Inheritance 9

Docu Documentation, Release 0.28.2

class Woman(Person):
class Meta:

must_have = {’gender’: ’female’}

Or even that one:

today = datetime.datetime.now()
day_16_years_back = now - datetime.timedelta(days=16*365)

class Child(Person):
parent = Reference(Person)

class Meta:
must_have = {’birth_date__gte’: day_16_years_back}

Note that our Woman or Child models are subclasses of Person model. They inherit all attributes of Person. Moreover,
Person‘s metaclass is inherited too. The must_have dictionaries of Child and Woman models are merged into the parent
model’s dictionary, so when we query the database for records described by the Woman model, we get all records that
have first_name and last_name defined and gender set to “female”. When we edit a Person instance, we do not care
about the parent attribute; we actually don’t even have access to it.

2.10 Model is a query, not a container

Warning: this section is out of date

We can even deal with data described above without model inheritance. Consider this valid model – LivingBeing:

class LivingBeing(Model):
species = Property()
birth_date = Property()

class Meta:
must_have = {’birth_date__exists’: True}

The data described by LivingBeing overlaps the data described by Person. Some people have their birth dates not
deifined and Person allows that. However, LivingBeing requires this attribute, so not all people will appear in a query
by this model. At the same time LivingBeing does not require names, so anybody and anything, named or nameless,
but ever born, is a “living being”. Updating a record through any of these models will not touch data that the model
does not know. For instance, saving an entity as a LivingBeing will not remove its name or parent, and working with
it as a Child will neither expose nor destroy the information about species.

These examples illustrate how models are more “views” than “schemata”.

Now let’s try these models with a Tokyo Cabinet database:

>>> db = docu.get_db(
... backend = ’docu.ext.tokyo_cabinet’,
... path = ’test.tct’
...)
>>> guido = Person(first_name=’Guido’, last_name=’van Rossum’)
>>> guido
<Person Guido van Rossum>
>>> guido.first_name
Guido
>>> guido.birth_date = datetime.date(1960, 1, 31)

10 Chapter 2. Tutorial

Docu Documentation, Release 0.28.2

>>> guido.save(db) # returns the autogenerated primary key
’person_0’
>>> ppl_named_guido = Person.objects(db).where(first_name=’Guido’)
>>> ppl_named_guido
[<Person Guido van Rossum>]
>>> guido = ppl_named_guido[0]
>>> guido.age # calculated on the fly -- datetime conversion works
49
>>> guido.birth_place = Country(name=’Netherlands’)
>>> guido.save() # model instance already knows the storage it belongs to
’person_0’
>>> guido.birth_place
<Country Netherlands>
>>> Country.objects(db) # yep, it was saved automatically with Guido
[<Country Netherlands>]
>>> larry = Person(first_name=’Larry’, last_name=’Wall’)
>>> larry.save(db)
’person_2’
>>> Person.objects(db)
[<Person Guido van Rossum>, <Person Larry Wall>]

...and so on.

Note that relations are supported out of the box.

2.10. Model is a query, not a container 11

Docu Documentation, Release 0.28.2

12 Chapter 2. Tutorial

CHAPTER

THREE

GLOSSARY

storage A place where data is stored. Provides a single namespace. Key/value stores can be represented with a single
storage object, some other databases will require multiple storage objects (e.g. each “database” of CouchDB
or each “collection” of MongoDB). Docu does not use nested namespaces because in document databases they
mean nothing anyway.

Doqu offers a uniform API for different databases by providing “storage adapters”. See Backend API for tech-
nical details and Extensions for a list of adapters bundled with Docu.

record A piece of data identified by an arbitrary unique primary key in a storage. In key/value stores the body of
the record will be called “value” (usually serialized to a string); in other databases it is called “document” (also
serialized as JSON, BSON, etc.). To avoid confusion we call all these things “records”. In Python the record is
represented as a dictionary of fields.

field A named property of a record or document. Records are actually containers for fields. There can be only one
field with given name in the same record/document.

document An dictionary with metadata. Can be associated with a record in a storage. The structure can be restricted
by schema. Optional validators determine how should the document look before it can be saved into the storage,
or what records can be associated with documents of given class. Special behaviour can abe added with methods
of the Document subclass (see Document API).

The simplest document is just a dictionary with some metadata. The metadata can be empty or contain informa-
tion about where the document comes from, what does its record look like, etc.

A document without schema or validators is equal to its record. A document with schema is only equal to the
record if they have the same sets of fields and these fields are valid (i.e. have correct data types and pass certain
tests).

As you see, there is a difference between documents and records but sometimes it’s very subtle.

schema A mapping of field names to Python data types. Prescribes the structure of a document.

validator Contains a certain test. When associated with a field of a document, determines whether given value is
suitable for the field and, therefore, whether the document is valid in general. An invalid document cannot be
saved to the storage. A validator can also contribute to the document query. See Validators for details on how
this works.

document query A query that yields all records within given storage that can be associated with certain document. A
document without validators does not add any conditions to the query, i.e. yields all records whatever structure
they have. Validators can require that some fields are present or pass certain tests.

13

Docu Documentation, Release 0.28.2

14 Chapter 3. Glossary

CHAPTER

FOUR

VALIDATORS

A validator simply takes an input and verifies it fulfills some criterion, such as a maximum length for a string. If the
validation fails, a ValidationError is raised. This simple system allows chaining any number of validators on
fields.

The module is heavily inspired by (and partially ripped off from) the WTForms validators. However, ours serve a bit
different purpose. First, error messages are not needed here (the errors will not be displayed to end users). Second,
these validators include query filtering capabilities.

Usage example:

class Person(Document):
validators = {

’first_name’: [required(), length(min=2)],
’age’: [number_range(min=18)],

}

This document will raise ValidationError if you attempt to save it with wrong values. You can call
Document.is_valid() to ensure everything is OK.

Now let’s query the database for all objects of Person:

Person.objects(db)

Doqu does not deal with tables or collections, it follows the DRY (Don’t Repeat Yourself) principle and uses the same
validators to determine what database records belong to given document class. The schema defined above is alone
equivalent to the following query:

...where(first_name__exists=True, age__gte=18).where_not(first_name=’’)

This is actually the base query available as Person.objects(db).

Note: not all validators affect document-related queries. See detailed documentation on each validator.

exception doqu.validators.StopValidation
Causes the validation chain to stop.

If StopValidation is raised, no more validators in the validation chain are called.

exception doqu.validators.ValidationError
Raised when a validator fails to validate its input.

class doqu.validators.Email
Validates an email address. Note that this uses a very primitive regular expression and should only be used in
instances where you later verify by other means, such as email activation or lookups.

15

http://wtforms.simplecodes.com

Docu Documentation, Release 0.28.2

Adds conditions to the document-related queries: the field must match the pattern.

doqu.validators.email
alias of Email

class doqu.validators.EqualTo(name)
Compares the values of two fields.

Parameters name – The name of the other field to compare to.

doqu.validators.equal_to
alias of EqualTo

class doqu.validators.Equals(other_value)
Compares the value to another value.

Parameters other_value – The other value to compare to.

Adds conditions to the document-related queries.

doqu.validators.equals
alias of Equals

class doqu.validators.Exists
Ensures given field exists in the record. This does not affect validation of a document with pre-defined structure
but does affect queries.

Adds conditions to the document-related queries.

doqu.validators.exists
alias of Exists

class doqu.validators.IPAddress
Validates an IP(v4) address.

Adds conditions to the document-related queries: the field must match the pattern.

doqu.validators.ip_address
alias of IPAddress

class doqu.validators.Length(min=None, max=None)
Validates the length of a string.

Parameters

• min – The minimum required length of the string. If not provided, minimum length will not
be checked.

• max – The maximum length of the string. If not provided, maximum length will not be
checked.

doqu.validators.length
alias of Length

class doqu.validators.NumberRange(min=None, max=None)
Validates that a number is of a minimum and/or maximum value, inclusive. This will work with any comparable
number type, such as floats and decimals, not just integers.

Parameters

• min – The minimum required value of the number. If not provided, minimum value will not
be checked.

• max – The maximum value of the number. If not provided, maximum value will not be
checked.

16 Chapter 4. Validators

Docu Documentation, Release 0.28.2

Adds conditions to the document-related queries.

doqu.validators.number_range
alias of NumberRange

class doqu.validators.Optional
Allows empty value (i.e. bool(value) == False) and terminates the validation chain for this field (i.e.
no more validators are applied to it). Note that errors raised prior to this validator are not suppressed.

doqu.validators.optional
alias of Optional

class doqu.validators.Required
Requires that the value is not empty, i.e. bool(value) returns True. The bool values can also be False (but
not anything else).

Adds conditions to the document-related queries: the field must exist and be not equal to an empty string.

doqu.validators.required
alias of Required

class doqu.validators.Regexp(pattern, flags=0)
Validates the field against a user provided regexp.

Parameters

• regex – The regular expression string to use.

• flags – The regexp flags to use, for example re.IGNORECASE or re.UNICODE.

Note: the pattern must be provided as string because compiled patterns cannot be used in database lookups.

Adds conditions to the document-related queries: the field must match the pattern.

doqu.validators.regexp
alias of Regexp

class doqu.validators.URL(require_tld=True)
Simple regexp based url validation. Much like the email validator, you probably want to validate the url later by
other means if the url must resolve.

Parameters require_tld – If true, then the domain-name portion of the URL must contain a .tld
suffix. Set this to false if you want to allow domains like localhost.

Adds conditions to the document-related queries: the field must match the pattern.

doqu.validators.url
alias of URL

class doqu.validators.AnyOf(choices)
Compares the incoming data to a sequence of valid inputs.

Parameters choices – A sequence of valid inputs.

Adds conditions to the document-related queries.

doqu.validators.any_of
alias of AnyOf

class doqu.validators.NoneOf(choices)
Compares the incoming data to a sequence of invalid inputs.

Parameters choices – A sequence of invalid inputs.

17

Docu Documentation, Release 0.28.2

Adds conditions to the document-related queries.

doqu.validators.none_of
alias of NoneOf

18 Chapter 4. Validators

CHAPTER

FIVE

UTILITIES

Various useful functions. Some can be imported from doqu.utils, some are available directly at doqu.

These utilities are either stable and well-tested or possible changes in their API are not considered harmful (i.e.
they are marginal). Important functions which design is likely to change or which lack proper tests are located in
doqu.future.

doqu.utils.dump_doc(self, raw=False, as_repr=False, align=True, keys=None, exclude=None)
Returns a multi-line string with document keys and values nicely formatted and aligned.

Parameters

• raw – If True, uses “raw” values, as fetched from the database (note that this will fail for
unsaved documents). If not, the values are obtained in the normal way, i.e. by __getitem__().
Default is False.

• align – If True, the keys and values are aligned into two columns of equal width. If False,
no padding is used. Default is True.

• keys – a list of document keys to show. By default all existing keys are included.

• exclude – a list of keys to exclude. By default no keys are excluded.

Prarm as_repr If True, uses repr() for values; if not, coerces them to Unicode. Default if False.

doqu.utils.get_db(settings_dict=None, **settings_kwargs)
Storage adapter factory. Expects path to storage backend module and optional backend-specific set-
tings. Returns storage adapter instance. If required underlying library is not found, exception
pkg_resources.DistributionNotFound is raised with package name and version as the message.

Parameters backend – string, dotted path to a Doqu storage backend (e.g. doqu.ext.tokyo_tyrant).
See Extensions for a list of bundled backends or Backend API for backend API reference.

Usage:

import doqu

db = doqu.get_db(backend=’doqu.ext.shelve’, path=’test.db’)

query = SomeDocument.objects(db)

Settings can be also passed as a dictionary:

SETTINGS = {
’backend’: ’doqu.ext.tokyo_cabinet’,
’path’: ’test.tct’,

}

19

Docu Documentation, Release 0.28.2

db = doqu.get_db(SETTINGS)

The two methods can be combined to override certain settings:

db = doqu.get_db(SETTINGS, path=’another_db.tct’)

doqu.utils.camel_case_to_underscores(class_name)
Returns a pretty readable name based on the class name. For example, “SomeClass” is translated to
“some_class”.

doqu.utils.load_fixture(path, db=None)
Reads given file (assuming it is in a known format), loads it into given storage adapter instance and returns that
instance.

Parameters

• path – absolute or relative path to the fixture file; user constructions (“~/foo”) will be ex-
panded.

• db – a storage adapter instance (its class must conform to the BaseStorageAdapter
API). If not provided, a memory storage will be created.

Usage:

import doqu

db = doqu.load_fixture(’account.csv’)

query = SomeDocument.objects(db)

20 Chapter 5. Utilities

CHAPTER

SIX

EXTENSIONS

Doqu ships with some batteries included.

6.1 Database backends

6.1.1 Shelve extension

A storage/query backend for shelve which is bundled with Python.

status stable

database any dbm-style database supported by shelve

dependencies the Python standard library

suitable for “smart” interface to a key/value store, small volume

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything that the pickle module can handle. This includes
most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

This extension wraps the standard Python library and provides Document support and uniform query API.

Note: The query methods are inefficient as they involve iterating over the full set of records and making
per-row comparison without indexing. This backend is not suitable for applications that depend on queries
and require decent speed. However, it is an excellent tool for existing DBM databases or for environments
and cases where external dependencies are not desired.

class doqu.ext.shelve_db.StorageAdapter(**kw)
Provides unified Doqu API for MongoDB (see doqu.backend_base.BaseStorageAdapter).

Parameters path – relative or absolute path to the database file (e.g. test.db)

clear()
Clears the whole storage from data, resets autoincrement counters.

connect()
Connects to the database. Raises RuntimeError if the connection is not closed yet. Use reconnect()
to explicitly close the connection and open it again.

delete(key)
Deletes record with given primary key.

21

http://docs.python.org/library/shelve.html
http://docs.python.org/library/shelve.html

Docu Documentation, Release 0.28.2

disconnect()
Closes internal store and removes the reference to it. If the backend works with a file, then all pending
changes are saved now.

find(doc_class=<type ‘dict’>, **conditions)
Returns instances of given class, optionally filtered by given conditions.

Parameters

• doc_class – Document class. Default is dict. Normally you will want a more advanced
class, such as Document or its more concrete subclasses (with explicit structure and
validators).

• conditions – key/value pairs, same as in where().

Note: By default this returns a tuple of (key, data_dict) per item. However, this can be changed if
doc_class provides the method from_storage(). For example, Document has the notion of “saved state”
so it can store the key within. Thus, only a single Document object is returned per item.

get(key, doc_class=<type ‘dict’>)
Returns document instance for given document class and primary key. Raises KeyError if there is no item
with given key in the database.

Parameters

• key – a numeric or string primary key (as supported by the backend).

• doc_class – a document class to wrap the data into. Default is dict.

get_many(keys, doc_class=<type ‘dict’>)
Returns an iterator of documents with primary keys from given list. Basically this is just a simple wrapper
around get() but some backends can reimplement the method in a much more efficient way.

get_or_create(doc_class=<type ‘dict’>, **conditions)
Queries the database for records associated with given document class and conforming to given extra
conditions. If such records exist, picks the first one (the order may be random depending on the database).
If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

query_adapter
alias of QueryAdapter

reconnect()
Gracefully closes current connection (if it’s not broken) and connects again to the database (e.g. reopens
the file).

save(key, data)
Saves given data with given primary key into the storage. Returns the primary key.

Parameters

• key – the primary key for given object; if None, will be generated.

• data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is already in the database in order to
update it instead of copying it.

sync()
Synchronizes the storage to disk immediately if the backend supports this operation. Normally the data is

22 Chapter 6. Extensions

Docu Documentation, Release 0.28.2

synchronized either on save(), or on timeout, or on disconnect(). This is strictly backend-specific.
If a backend does not support the operation, NotImplementedError is raised.

class doqu.ext.shelve_db.QueryAdapter(*args, **kw)
The Query class.

count()
Same as __len__ but a bit faster.

delete()
Deletes all records that match current query.

order_by(names, reverse=False)
Defines order in which results should be retrieved.

Parameters

• names – the names of columns by which the ordering should be done. Can be an iterable
with strings or a single string.

• reverse – If True, direction changes from ascending (default) to descending.

Examples:

q.order_by(’name’) # ascending
q.order_by(’name’, reverse=True) # descending

If multiple names are provided, grouping is done from left to right.

Note: while you can specify the direction of sorting, it is not possible to do it on per-name basis due to
backend limitations.

Warning: ordering implementation for this database is currently inefficient.

values(name)
Returns an iterator that yields distinct values for given column name.

Supports date parts (i.e. date__month=7).

Note: this is currently highly inefficient because the underlying library does not support columns mode
(tctdbiternext3). Moreover, even current implementation can be optimized by removing the overhead of
creating full-blown document objects.

Note: unhashable values (like lists) are silently ignored.

where(**conditions)
Returns Query instance filtered by given conditions. The conditions are specified by backend’s underlying
API.

where_not(**conditions)
Returns Query instance. Inverted version of where().

6.1.2 Shove extension

A storage/query backend for shove which is bundled with Python.

6.1. Database backends 23

http://pypi.python.org/pypi/shove

Docu Documentation, Release 0.28.2

status beta

database any supported by shove: storage — Amazon S3 Web Service, Berkeley Source Database,
Filesystem, Firebird, FTP, DBM, Durus, Memory, Microsoft SQL Server, MySQL, Oracle, Post-
greSQL, SQLite, Subversion, Zope Object Database (ZODB); caching — Filesystem, Firebird,
memcached, Memory, Microsoft SQL Server, MySQL, Oracle, PostgreSQL, SQLite

dependencies shove

suitable for “smart” interface to a key/value store; temporary memory storage

This extension wraps the shove library and provides the uniform query API along with support for Document API.

Note: Regardless of the underlying storage, Shove serializes the records and only offers access by pri-
mary key. This means that efficient queries are impossible even with RDBMS; moreover, such databases
are more likely to perform slower than simple key/value stores. The Docu queries with Shove involve it-
erating over the full set of records on client side and making per-row comparison without proper indexing.

That said, the backend is considered not suitable for applications that depend on queries and require decent
speed of lookups by value. However, it can be very useful as a memory storage (e.g. to analyze a JSON
dump or calculate some data on the fly) or as an improved interface to an existing pure key/value storage
which is mostly used without advanced queries.

class doqu.ext.shove_db.StorageAdapter(**kw)
All parametres are optional. Here are the most common:

Parameters

• store_uri – URI for the data store

• cache_uri – URI for the caching instance

The URI format for a backend is documented in its module (see the shove documentation). The URI form is the
same as SQLAlchemy’s.

clear()
Clears the whole storage from data, resets autoincrement counters.

connect()
Connects to the database. Raises RuntimeError if the connection is not closed yet. Use reconnect()
to explicitly close the connection and open it again.

delete(key)
Deletes record with given primary key.

disconnect()
Closes internal store and removes the reference to it. If the backend works with a file, then all pending
changes are saved now.

find(doc_class=<type ‘dict’>, **conditions)
Returns instances of given class, optionally filtered by given conditions.

Parameters

• doc_class – Document class. Default is dict. Normally you will want a more advanced
class, such as Document or its more concrete subclasses (with explicit structure and
validators).

• conditions – key/value pairs, same as in where().

24 Chapter 6. Extensions

http://pypi.python.org/pypi/shove
http://pypi.python.org/pypi/shove
http://pypi.python.org/pypi/shove
http://www.sqlalchemy.org/docs/04/dbengine.html#dbengine_establishing

Docu Documentation, Release 0.28.2

Note: By default this returns a tuple of (key, data_dict) per item. However, this can be changed if
doc_class provides the method from_storage(). For example, Document has the notion of “saved state”
so it can store the key within. Thus, only a single Document object is returned per item.

get(key, doc_class=<type ‘dict’>)
Returns document instance for given document class and primary key. Raises KeyError if there is no item
with given key in the database.

Parameters

• key – a numeric or string primary key (as supported by the backend).

• doc_class – a document class to wrap the data into. Default is dict.

get_many(keys, doc_class=<type ‘dict’>)
Returns an iterator of documents with primary keys from given list. Basically this is just a simple wrapper
around get() but some backends can reimplement the method in a much more efficient way.

get_or_create(doc_class=<type ‘dict’>, **conditions)
Queries the database for records associated with given document class and conforming to given extra
conditions. If such records exist, picks the first one (the order may be random depending on the database).
If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

query_adapter
alias of QueryAdapter

reconnect()
Gracefully closes current connection (if it’s not broken) and connects again to the database (e.g. reopens
the file).

save(key, data)
Saves given data with given primary key into the storage. Returns the primary key.

Parameters

• key – the primary key for given object; if None, will be generated.

• data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is already in the database in order to
update it instead of copying it.

sync()
Synchronizes the storage to disk immediately if the backend supports this operation. Normally the data is
synchronized either on save(), or on timeout, or on disconnect(). This is strictly backend-specific.
If a backend does not support the operation, NotImplementedError is raised.

class doqu.ext.shove_db.QueryAdapter(*args, **kw)
The Query class.

count()
Same as __len__ but a bit faster.

delete()
Deletes all records that match current query.

order_by(names, reverse=False)
Defines order in which results should be retrieved.

Parameters

6.1. Database backends 25

Docu Documentation, Release 0.28.2

• names – the names of columns by which the ordering should be done. Can be an iterable
with strings or a single string.

• reverse – If True, direction changes from ascending (default) to descending.

Examples:

q.order_by(’name’) # ascending
q.order_by(’name’, reverse=True) # descending

If multiple names are provided, grouping is done from left to right.

Note: while you can specify the direction of sorting, it is not possible to do it on per-name basis due to
backend limitations.

Warning: ordering implementation for this database is currently inefficient.

values(name)
Returns an iterator that yields distinct values for given column name.

Supports date parts (i.e. date__month=7).

Note: this is currently highly inefficient because the underlying library does not support columns mode
(tctdbiternext3). Moreover, even current implementation can be optimized by removing the overhead of
creating full-blown document objects.

Note: unhashable values (like lists) are silently ignored.

where(**conditions)
Returns Query instance filtered by given conditions. The conditions are specified by backend’s underlying
API.

where_not(**conditions)
Returns Query instance. Inverted version of where().

6.1.3 Tokyo Cabinet extension

A storage/query backend for Tokyo Cabinet.

Allows direct access to the database and is thus extremely fast. However, it locks the database and is therefore not
suitable for environments where concurrent access is required. Please use Tokyo Tyrant for such environments.

status beta

database Tokyo Cabinet

dependencies tokyo-python, pyrant

suitable for general purpose, embedded

Warning: this module is not intended for production despite it may be stable. Bug reports and patches are
welcome.

Note: this module should not depend on Pyrant; just needs some refactoring.

26 Chapter 6. Extensions

http://1978th.net/tokyocabinet
http://pypi.python.org/pypi/tokyo-python/
http://bitbucket.org/neithere/pyrant

Docu Documentation, Release 0.28.2

Note: support for metasearch is planned.

Usage:

>>> import os
>>> import doqu
>>> DB_SETTINGS = {
... ’backend’: ’doqu.ext.tokyo_cabinet’,
... ’path’: ’_tc_test.tct’,
... }
>>> assert not os.path.exists(DB_SETTINGS[’path’]), ’test database must not exist’
>>> db = doqu.get_db(DB_SETTINGS)
>>> class Person(doqu.Document):
... structure = {’name’: unicode}
... def __unicode__(self):
... u’%(name)s’ % self
...
>>> Person.objects(db) # the database is expected to be empty
[]
>>> db.connection[’john’] = {’name’: ’John’}
>>> mary = Person(name=’Mary’)
>>> mary_pk = mary.save(db)
>>> q = Person.objects(db)
>>> q
[<Person John>, <Person Mary>]
>>> q.where(name__matches=’^J’)
[<Person John>]
>>> q # the original query was not modified by the descendant
[<Person John>, <Person Mary>]
>>> db.connection.close()
>>> os.unlink(DB_SETTINGS[’path’])

class doqu.ext.tokyo_cabinet.StorageAdapter(**kw)

Parameters path – relative or absolute path to the database file (e.g. test.tct)

Note: Currently only table flavour of Tokyo Cabinet databases is supported. It is uncertain whether it is worth
supporting other flavours as they do not provide query mechanisms other than access by primary key.

clear()
Clears the whole storage from data, resets autoincrement counters.

connect()
Connects to the database. Raises RuntimeError if the connection is not closed yet. Use reconnect()
to explicitly close the connection and open it again.

delete(key)
Deletes record with given primary key.

disconnect()
Closes internal store and removes the reference to it. If the backend works with a file, then all pending
changes are saved now.

find(doc_class=<type ‘dict’>, **conditions)
Returns instances of given class, optionally filtered by given conditions.

Parameters

6.1. Database backends 27

Docu Documentation, Release 0.28.2

• doc_class – Document class. Default is dict. Normally you will want a more advanced
class, such as Document or its more concrete subclasses (with explicit structure and
validators).

• conditions – key/value pairs, same as in where().

Note: By default this returns a tuple of (key, data_dict) per item. However, this can be changed if
doc_class provides the method from_storage(). For example, Document has the notion of “saved state”
so it can store the key within. Thus, only a single Document object is returned per item.

get(key, doc_class=<type ‘dict’>)
Returns document instance for given document class and primary key. Raises KeyError if there is no item
with given key in the database.

Parameters

• key – a numeric or string primary key (as supported by the backend).

• doc_class – a document class to wrap the data into. Default is dict.

get_many(keys, doc_class=<type ‘dict’>)
Returns an iterator of documents with primary keys from given list. Basically this is just a simple wrapper
around get() but some backends can reimplement the method in a much more efficient way.

get_or_create(doc_class=<type ‘dict’>, **conditions)
Queries the database for records associated with given document class and conforming to given extra
conditions. If such records exist, picks the first one (the order may be random depending on the database).
If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

query_adapter
alias of QueryAdapter

reconnect()
Gracefully closes current connection (if it’s not broken) and connects again to the database (e.g. reopens
the file).

save(key, data)
Saves given data with given primary key into the storage. Returns the primary key.

Parameters

• key – the primary key for given object; if None, will be generated.

• data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is already in the database in order to
update it instead of copying it.

sync()
Synchronizes the storage to disk immediately if the backend supports this operation. Normally the data is
synchronized either on save(), or on timeout, or on disconnect(). This is strictly backend-specific.
If a backend does not support the operation, NotImplementedError is raised.

class doqu.ext.tokyo_cabinet.QueryAdapter(*args, **kw)
The Query class.

count()
Same as __len__ but without fetching the records (i.e. faster).

28 Chapter 6. Extensions

Docu Documentation, Release 0.28.2

delete()
Deletes all records that match current query.

order_by(names, reverse=False)
Returns a query object with same conditions but with results sorted by given field. By default the direction
of sorting is ascending.

Parameters

• names – list of strings: names of fields by which results should be sorted. Some backends
may only support a single field for sorting.

• reverse – bool: if True, the direction of sorting is reversed and becomes descending.
Default is False.

values(name)
Returns an iterator that yields distinct values for given column name.

Note: this is currently highly inefficient because the underlying library does not support columns mode
(tctdbiternext3). Moreover, even current implementation can be optimized by removing the overhead of
creating full-blown document objects (though preserving data type is necessary).

where(**conditions)
Returns Query instance filtered by given conditions. The conditions are specified by backend’s underlying
API.

where_not(**conditions)
Returns Query instance. Inverted version of where().

6.1.4 Tokyo Tyrant extension

A storage/query backend for Tokyo Tyrant.

status stable

database Tokyo Cabinet, Tokyo Tyrant

dependencies Pyrant

suitable for general purpose

class doqu.ext.tokyo_tyrant.storage.StorageAdapter(**kw)

clear()
Clears the whole storage from data, resets autoincrement counters.

connect()
Connects to the database. Raises RuntimeError if the connection is not closed yet. Use reconnect()
to explicitly close the connection and open it again.

delete(key)
Deletes record with given primary key.

disconnect()
Closes internal store and removes the reference to it. If the backend works with a file, then all pending
changes are saved now.

find(doc_class=<type ‘dict’>, **conditions)
Returns instances of given class, optionally filtered by given conditions.

6.1. Database backends 29

http://1978th.net/tokyocabinet
http://1978th.net/tokyotyrant
http://pypi.python.org/pypi/pyrant

Docu Documentation, Release 0.28.2

Parameters

• doc_class – Document class. Default is dict. Normally you will want a more advanced
class, such as Document or its more concrete subclasses (with explicit structure and
validators).

• conditions – key/value pairs, same as in where().

Note: By default this returns a tuple of (key, data_dict) per item. However, this can be changed if
doc_class provides the method from_storage(). For example, Document has the notion of “saved state”
so it can store the key within. Thus, only a single Document object is returned per item.

get(key, doc_class=<type ‘dict’>)
Returns document instance for given document class and primary key. Raises KeyError if there is no item
with given key in the database.

Parameters

• key – a numeric or string primary key (as supported by the backend).

• doc_class – a document class to wrap the data into. Default is dict.

get_many(keys, doc_class=<type ‘dict’>)
Returns an iterator of documents with primary keys from given list. Basically this is just a simple wrapper
around get() but some backends can reimplement the method in a much more efficient way.

get_or_create(doc_class=<type ‘dict’>, **conditions)
Queries the database for records associated with given document class and conforming to given extra
conditions. If such records exist, picks the first one (the order may be random depending on the database).
If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

reconnect()
Gracefully closes current connection (if it’s not broken) and connects again to the database (e.g. reopens
the file).

save(key, data)
Saves given data with given primary key into the storage. Returns the primary key.

Parameters

• key – the primary key for given object; if None, will be generated.

• data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is already in the database in order to
update it instead of copying it.

sync()
Synchronizes the storage to disk immediately if the backend supports this operation. Normally the data is
synchronized either on save(), or on timeout, or on disconnect(). This is strictly backend-specific.
If a backend does not support the operation, NotImplementedError is raised.

class doqu.ext.tokyo_tyrant.query.QueryAdapter(storage, doc_class)

count()
Returns the number of records that match current query. Does not fetch the records.

delete()
Deletes all records that match current query.

30 Chapter 6. Extensions

Docu Documentation, Release 0.28.2

order_by(names, reverse=False)
Returns a query object with same conditions but with results sorted by given field. By default the direction
of sorting is ascending.

Parameters

• names – list of strings: names of fields by which results should be sorted. Some backends
may only support a single field for sorting.

• reverse – bool: if True, the direction of sorting is reversed and becomes descending.
Default is False.

values(name)
Returns a list of unique values for given column name.

where(**conditions)
Returns Query instance filtered by given conditions.

where_not(**conditions)
Returns Query instance. Inverted version of where().

6.1.5 MongoDB extension

A storage/query backend for MongoDB.

status beta

database MongoDB

dependencies pymongo

suitable for general purpose (mostly server-side)

Warning: this module is not intended for production. It contains some hacks and should be refactored. However,
it is actually used in a real project involving complex queries. Patches, improvements, rewrites are welcome.

class doqu.ext.mongodb.StorageAdapter(**kw)

Parameters

• host –

• port –

• database –

• collection –

clear()
Clears the whole storage from data, resets autoincrement counters.

connect()
Connects to the database. Raises RuntimeError if the connection is not closed yet. Use reconnect()
to explicitly close the connection and open it again.

delete(key)
Deletes record with given primary key.

disconnect()
Closes internal store and removes the reference to it. If the backend works with a file, then all pending
changes are saved now.

6.1. Database backends 31

http://mongodb.org
http://api.mongodb.org/python

Docu Documentation, Release 0.28.2

find(doc_class=<type ‘dict’>, **conditions)
Returns instances of given class, optionally filtered by given conditions.

Parameters

• doc_class – Document class. Default is dict. Normally you will want a more advanced
class, such as Document or its more concrete subclasses (with explicit structure and
validators).

• conditions – key/value pairs, same as in where().

Note: By default this returns a tuple of (key, data_dict) per item. However, this can be changed if
doc_class provides the method from_storage(). For example, Document has the notion of “saved state”
so it can store the key within. Thus, only a single Document object is returned per item.

get(key, doc_class=<type ‘dict’>)
Returns document instance for given document class and primary key. Raises KeyError if there is no item
with given key in the database.

Parameters

• key – a numeric or string primary key (as supported by the backend).

• doc_class – a document class to wrap the data into. Default is dict.

get_many(keys, doc_class=<type ‘dict’>)
Returns an iterator of documents with primary keys from given list. Basically this is just a simple wrapper
around get() but some backends can reimplement the method in a much more efficient way.

get_or_create(doc_class=<type ‘dict’>, **conditions)
Queries the database for records associated with given document class and conforming to given extra
conditions. If such records exist, picks the first one (the order may be random depending on the database).
If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

reconnect()
Gracefully closes current connection (if it’s not broken) and connects again to the database (e.g. reopens
the file).

save(key, data)
Saves given data with given primary key into the storage. Returns the primary key.

Parameters

• key – the primary key for given object; if None, will be generated.

• data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is already in the database in order to
update it instead of copying it.

sync()
Synchronizes the storage to disk immediately if the backend supports this operation. Normally the data is
synchronized either on save(), or on timeout, or on disconnect(). This is strictly backend-specific.
If a backend does not support the operation, NotImplementedError is raised.

class doqu.ext.mongodb.QueryAdapter(*args, **kw)

32 Chapter 6. Extensions

Docu Documentation, Release 0.28.2

count()
Returns the number of records that match given query. The result of q.count() is exactly equivalent to the
result of len(q) but does not involve fetching of the records.

delete()
Deletes all records that match current query.

order_by(names, reverse=False)
Returns a query object with same conditions but with results sorted by given field. By default the direction
of sorting is ascending.

Parameters

• names – list of strings: names of fields by which results should be sorted. Some backends
may only support a single field for sorting.

• reverse – bool: if True, the direction of sorting is reversed and becomes descending.
Default is False.

values(name)
Returns a list of unique values for given field name.

Parameters name – the field name.

Note: A set is dynamically build on client side if the query contains conditions. If it doesn’t, a much more
efficient approach is used. It is only available within current connection, not query.

where(**conditions)
Returns Query instance filtered by given conditions. The conditions are specified by backend’s underlying
API.

where_not(**conditions)
Returns Query instance. Inverted version of where().

6.2 Convenience abstractions

6.2.1 Document Fields

New in version 0.23.

Note: This abstraction is by no means a complete replacement for the normal approach of semantic grouping. Please
use it with care. Also note that the API can change. The class can even be removed in future versions of Doqu.

class doqu.ext.fields.Field(datatype, essential=False, required=False, default=None,
choices=None, label=None, pickled=False)

Representation of a document property. Syntax sugar for separate definitions of structure, validators, defaults
and labels.

Usage:

class Book(Document):
title = Field(unicode, required=True, default=u’Hi’, label=’Title’)

this is just another way to type:

6.2. Convenience abstractions 33

Docu Documentation, Release 0.28.2

class Book(Document):
structure = {

’title’: unicode
}
validators = {

’title’: [validators.Required()]
}
defaults = {

’title’: u’Hi’
}
labels = {

’title’: u’The Title’
}

Nice, eh? But be careful: the title definition in the first example barely fits its line. Multiple long definitions will
turn your document class into an opaque mess of characters, while the semantically grouped definitions stay
short and keep related things aligned together. “Semantic sugar” is sometimes pretty bitter, use it with care.

Complex validators still need to be specified by hand in the relevant dictionary. This can be worked around by
creating specialized field classes (e.g. EmailField) as it is done e.g. in Django.

Parameters

• essential – if True, validator Exists is added (i.e. the field may be empty but it must be
present in the record).

• pickled – if True, the value is preprocessed with pickle’s dumps/loads functions. This of
course breaks lookups by this field but enables storing arbitrary Python objects.

class doqu.ext.fields.FileField(base_path, **kwargs)
Handles externally stored files.

Warning: This field saves the file when process_outgoing() is triggered (see outgoing_processors
in DocumentMetadata).
Outdated (replaced) files are not automatically removed.

Usage:

class Doc(Document):
attachment = FileField(base_path=MEDIA_ROOT+’attachments/’)

d = Doc()
d.attachment = open(’foo.txt’)
d.save(db)

dd = Doc.objects(db)[0]
print dd.attachment.file.read()

Parameters base_path – A string or callable: the directory where the files should be stored.

file_wrapper_class
alias of FileWrapper

class doqu.ext.fields.ImageField(base_path, **kwargs)
A FileField that provides extended support for images. The ImageField.file is an ImageWrapper
instance.

Usage:

34 Chapter 6. Extensions

Docu Documentation, Release 0.28.2

class Photo(Document):
summary = Field(unicode)
image = ImageField(base_path=’photos/’)

p = Photo(summary=’Fido’, image=open(’fido.jpg’))
p.save(db)

playing with image
print "The photo is {0}×{1}px".format(*p.image.size)
p.image.rotate(90)
p.image.save()

file_wrapper_class
alias of ImageWrapper

6.3 Integration with other libraries

6.3.1 WTForms extension

Offers integration with WTForms.

status beta

dependencies wtforms

The extension provides two new field classes: QuerySetSelectField and DocumentSelectField (inspired
by wtforms.ext.django.*). They connect the forms with the Doqu API for queries. You can manually create forms with
these fields.

The easiest way to create a Document-compliant form is using the function document_form_factory(). It
returns a form class based on the document structure:

from doqu import Document
from doqu import validators
from doqu.ext.forms import document_form_factory

class Location(Document):
structure = {’name’: unicode}

class Person(Document):
structure = {’name’: unicode, ’age’: int, ’location’: Location}
labels = {’name’: ’Full name’, ’age’: ’Age’, ’location’: ’Location’}
validators = {’name’: [required()]}

PersonForm = document_form_factory(Person)

The last line does the same as this code:

from wtforms import TextField, IntegerField, validators
from doqu.ext.forms import DocumentSelectField

class PersonForm(wtforms.Form):
name = TextField(’Full name’, [validators.Required()])
age = IntegerField(’Age’)
location = DocumentSelectField(’Location’, [], Location)

6.3. Integration with other libraries 35

http://wtforms.simplecodes.com/
http://wtforms.simplecodes.com/

Docu Documentation, Release 0.28.2

doqu.ext.forms.document_form_factory(document_class, storage=None)
Expects a Document instance, creates and returns a wtforms.Form class for this model.

The form fields are selected depending on the Python type declared by each property.

Parameters

• document_class – the Doqu document class for which the form should be created

• storage – a Doqu-compatible storage; we need it to generate lists of choices for references
to other models. If not defined, references will not appear in the form.

Caveat: the unicode type can be mapped to TextField and TextAreaField. It is impossible to guess which one
should be used unless maximum length is defined for the property. TextAreaField is picked by default. It is a
good idea to automatically shrink it with JavaScript so that its size always matches the contents.

class doqu.ext.forms.QuerySetSelectField(label=u’‘, validators=None, queryset=None, la-
bel_attr=’‘, allow_blank=False, blank_text=u’‘,
**kw)

Given a QuerySet either at initialization or inside a view, will display a select drop-down field of choices. The
data property actually will store/keep an ORM model instance, not the ID. Submitting a choice which is not in
the queryset will result in a validation error.

Specifying label_attr in the constructor will use that property of the model instance for display in the list, else
the model object’s __str__ or __unicode__ will be used.

If allow_blank is set to True, then a blank choice will be added to the top of the list. Selecting this choice will
result in the data property being None. The label for the blank choice can be set by specifying the blank_text
parameter.

populate_obj(obj, name)
Populates obj.<name> with the field’s data.

Note This is a destructive operation. If obj.<name> already exists, it will be overridden. Use
with caution.

post_validate(form, validation_stopped)
Override if you need to run any field-level validation tasks after normal validation. This shouldn’t be
needed in most cases.

Parameters

• form – The form the field belongs to.

• validation_stopped – True if any validator raised StopValidation.

process(formdata, data=<object object at 0x283e1d0>)
Process incoming data, calling process_data, process_formdata as needed, and run filters.

If data is not provided, process_data will be called on the field’s default.

Field subclasses usually won’t override this, instead overriding the process_formdata and process_data
methods. Only override this for special advanced processing, such as when a field encapsulates many
inputs.

process_data(value)
Process the Python data applied to this field and store the result.

This will be called during form construction by the form’s kwargs or obj argument.

Parameters value – The python object containing the value to process.

validate(form, extra_validators=())
Validates the field and returns True or False. self.errors will contain any errors raised during validation.
This is usually only called by Form.validate.

36 Chapter 6. Extensions

Docu Documentation, Release 0.28.2

Subfields shouldn’t override this, but rather override either pre_validate, post_validate or both, depending
on needs.

Parameters

• form – The form the field belongs to.

• extra_validators – A list of extra validators to run.

class doqu.ext.forms.DocumentSelectField(label=u’‘, validators=None, document_class=None,
storage=None, **kw)

Like a QuerySetSelectField, except takes a document class instead of a queryset and lists everything in it.

populate_obj(obj, name)
Populates obj.<name> with the field’s data.

Note This is a destructive operation. If obj.<name> already exists, it will be overridden. Use
with caution.

post_validate(form, validation_stopped)
Override if you need to run any field-level validation tasks after normal validation. This shouldn’t be
needed in most cases.

Parameters

• form – The form the field belongs to.

• validation_stopped – True if any validator raised StopValidation.

process(formdata, data=<object object at 0x283e1d0>)
Process incoming data, calling process_data, process_formdata as needed, and run filters.

If data is not provided, process_data will be called on the field’s default.

Field subclasses usually won’t override this, instead overriding the process_formdata and process_data
methods. Only override this for special advanced processing, such as when a field encapsulates many
inputs.

process_data(value)
Process the Python data applied to this field and store the result.

This will be called during form construction by the form’s kwargs or obj argument.

Parameters value – The python object containing the value to process.

validate(form, extra_validators=())
Validates the field and returns True or False. self.errors will contain any errors raised during validation.
This is usually only called by Form.validate.

Subfields shouldn’t override this, but rather override either pre_validate, post_validate or both, depending
on needs.

Parameters

• form – The form the field belongs to.

• extra_validators – A list of extra validators to run.

6.3. Integration with other libraries 37

Docu Documentation, Release 0.28.2

38 Chapter 6. Extensions

CHAPTER

SEVEN

API REFERENCE

7.1 Document API

Documents represent database records. Each document is a (in)complete subset of fields contained in a record. Avail-
able data types and query mechanisms are determined by the storage in use.

The API was inspired by Django, MongoKit, WTForms, Svarga and several other projects. It was important to KISS
(keep it simple, stupid), DRY (do not repeat yourself) and to make the API as abstract as possible so that it did not
depend on backends and yet did not get in the way.

class doqu.document_base.Document(**kw)
A document/query object. Dict-like representation of a document stored in a database. Includes schema decla-
ration, bi-directional validation (outgoing and query), handles relations and has the notion of the saved state, i.e.
knows the storage and primary key of the corresponding record.

classmethod contribute_to_query(query)
Returns given query filtered by schema and validators defined for this document.

delete()
Deletes the object from the associated storage.

classmethod from_storage(storage, key, data)
Returns a document instance filled with given data and bound to given storage and key. The instance
can be safely saved back using save(). If the concrete subclass defines the structure, then usused fields
coming from the storage are hidden from the public API but nevertheless they will be saved back to the
database as is.

pk
Returns current primary key (if any) or None.

save(storage=None, keep_key=False)
Saves instance to given storage.

Parameters

• storage – the storage to which the document should be saved. If not specified, default
storage is used (the one from which the document was retrieved of to which it this instance
was saved before).

• keep_key – if True, the primary key is preserved even when saving to another storage.
This is potentially dangerous because existing unrelated records can be overwritten. You
will only need this when copying a set of records that reference each other by primary key.
Default is False.

39

http://djangoproject.com
http://pypi.python.org/pypi/mongokit/
http://wtforms.simplecodes.com
http://bitbucket.org/piranha/svarga/

Docu Documentation, Release 0.28.2

validate()
Checks if instance data is valid. This involves a) checking whether all values correspond to the declated
structure, and b) running all Validators against the data dictionary.

Raises ValidationError if something is wrong.

Note: if the data dictionary does not contain some items determined by structure or validators, these items
are not checked.

Note: The document is checked as is. There are no side effects. That is, if some required values are
empty, they will be considered invalid even if default values are defined for them. The save() method,
however, fills in the default values before validating.

doqu.document_base.Many
alias of OneToManyRelation

7.2 Document Fields

New in version 0.23.

Note: This abstraction is by no means a complete replacement for the normal approach of semantic grouping. Please
use it with care. Also note that the API can change. The class can even be removed in future versions of Doqu.

class doqu.ext.fields.Field(datatype, essential=False, required=False, default=None,
choices=None, label=None, pickled=False)

Representation of a document property. Syntax sugar for separate definitions of structure, validators, defaults
and labels.

Usage:

class Book(Document):
title = Field(unicode, required=True, default=u’Hi’, label=’Title’)

this is just another way to type:

class Book(Document):
structure = {

’title’: unicode
}
validators = {

’title’: [validators.Required()]
}
defaults = {

’title’: u’Hi’
}
labels = {

’title’: u’The Title’
}

Nice, eh? But be careful: the title definition in the first example barely fits its line. Multiple long definitions will
turn your document class into an opaque mess of characters, while the semantically grouped definitions stay
short and keep related things aligned together. “Semantic sugar” is sometimes pretty bitter, use it with care.

40 Chapter 7. API reference

Docu Documentation, Release 0.28.2

Complex validators still need to be specified by hand in the relevant dictionary. This can be worked around by
creating specialized field classes (e.g. EmailField) as it is done e.g. in Django.

Parameters

• essential – if True, validator Exists is added (i.e. the field may be empty but it must be
present in the record).

• pickled – if True, the value is preprocessed with pickle’s dumps/loads functions. This of
course breaks lookups by this field but enables storing arbitrary Python objects.

class doqu.ext.fields.FileField(base_path, **kwargs)
Handles externally stored files.

Warning: This field saves the file when process_outgoing() is triggered (see outgoing_processors
in DocumentMetadata).
Outdated (replaced) files are not automatically removed.

Usage:

class Doc(Document):
attachment = FileField(base_path=MEDIA_ROOT+’attachments/’)

d = Doc()
d.attachment = open(’foo.txt’)
d.save(db)

dd = Doc.objects(db)[0]
print dd.attachment.file.read()

Parameters base_path – A string or callable: the directory where the files should be stored.

file_wrapper_class
alias of FileWrapper

class doqu.ext.fields.ImageField(base_path, **kwargs)
A FileField that provides extended support for images. The ImageField.file is an ImageWrapper
instance.

Usage:

class Photo(Document):
summary = Field(unicode)
image = ImageField(base_path=’photos/’)

p = Photo(summary=’Fido’, image=open(’fido.jpg’))
p.save(db)

playing with image
print "The photo is {0}×{1}px".format(*p.image.size)
p.image.rotate(90)
p.image.save()

file_wrapper_class
alias of ImageWrapper

7.2. Document Fields 41

Docu Documentation, Release 0.28.2

7.3 Backend API

Abstract classes for unified storage/query API with various backends.

Derivative classes are expected to be either complete implementations or wrappers for external libraries. The latter is
assumed to be a better solution as Doqu is only one of the possible layers. It is always a good idea to provide different
levels of abstraction and let others combine them as needed.

The backends do not have to subclass BaseStorageAdapter and BaseQueryAdapter. However, they must
closely follow their API.

class doqu.backend_base.BaseStorageAdapter(**kw)
Abstract adapter class for storage backends.

Note: Backends policy

If a public method foo() internally uses a private method _foo(), then subclasses should only overload only the
private attribute. This ensures that docstring and signature are always correct. However, if the backend intro-
duces some deviations in behaviour or extends the signature, the public method can (and should) be overloaded
at least to provide documentation.

clear()
Clears the whole storage from data, resets autoincrement counters.

connect()
Connects to the database. Raises RuntimeError if the connection is not closed yet. Use reconnect()
to explicitly close the connection and open it again.

delete(key)
Deletes record with given primary key.

disconnect()
Closes internal store and removes the reference to it. If the backend works with a file, then all pending
changes are saved now.

find(doc_class=<type ‘dict’>, **conditions)
Returns instances of given class, optionally filtered by given conditions.

Parameters

• doc_class – Document class. Default is dict. Normally you will want a more advanced
class, such as Document or its more concrete subclasses (with explicit structure and
validators).

• conditions – key/value pairs, same as in where().

Note: By default this returns a tuple of (key, data_dict) per item. However, this can be changed if
doc_class provides the method from_storage(). For example, Document has the notion of “saved state”
so it can store the key within. Thus, only a single Document object is returned per item.

get(key, doc_class=<type ‘dict’>)
Returns document instance for given document class and primary key. Raises KeyError if there is no item
with given key in the database.

Parameters

• key – a numeric or string primary key (as supported by the backend).

• doc_class – a document class to wrap the data into. Default is dict.

42 Chapter 7. API reference

Docu Documentation, Release 0.28.2

get_many(keys, doc_class=<type ‘dict’>)
Returns an iterator of documents with primary keys from given list. Basically this is just a simple wrapper
around get() but some backends can reimplement the method in a much more efficient way.

get_or_create(doc_class=<type ‘dict’>, **conditions)
Queries the database for records associated with given document class and conforming to given extra
conditions. If such records exist, picks the first one (the order may be random depending on the database).
If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

reconnect()
Gracefully closes current connection (if it’s not broken) and connects again to the database (e.g. reopens
the file).

save(key, data)
Saves given data with given primary key into the storage. Returns the primary key.

Parameters

• key – the primary key for given object; if None, will be generated.

• data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is already in the database in order to
update it instead of copying it.

sync()
Synchronizes the storage to disk immediately if the backend supports this operation. Normally the data is
synchronized either on save(), or on timeout, or on disconnect(). This is strictly backend-specific.
If a backend does not support the operation, NotImplementedError is raised.

class doqu.backend_base.BaseQueryAdapter(storage, doc_class)
Query adapter for given backend.

count()
Returns the number of records that match given query. The result of q.count() is exactly equivalent to
the result of len(q). The implementation details do not differ by default, but it is recommended that the
backends stick to the following convention:

•__len__ executes the query, retrieves all matching records and tests the length of the resulting list;

•count executes a special query that only returns a single value: the number of matching records.

Thus, __len__ is more suitable when you are going to iterate the records anyway (and do no extra queries),
while count is better when you just want to check if the records exist, or to only use a part of matching
records (i.e. a slice).

delete()
Deletes all records that match current query.

order_by(names, reverse=False)
Returns a query object with same conditions but with results sorted by given field. By default the direction
of sorting is ascending.

Parameters

• names – list of strings: names of fields by which results should be sorted. Some backends
may only support a single field for sorting.

• reverse – bool: if True, the direction of sorting is reversed and becomes descending.
Default is False.

7.3. Backend API 43

Docu Documentation, Release 0.28.2

values(name)
Returns a list of unique values for given field name.

Parameters name – the field name.

where(**conditions)
Returns Query instance filtered by given conditions. The conditions are specified by backend’s underlying
API.

where_not(**conditions)
Returns Query instance. Inverted version of where().

exception doqu.backend_base.ProcessorDoesNotExist
This exception is raised when given backend does not have a processor suitable for given value. Usually you
will need to catch a subclass of this exception.

class doqu.backend_base.LookupManager
Usage:

lookup_manager = LookupManager()

@lookup_manager.register(’equals’, default=True) # only one lookup can be default
def exact_match(name, value):

’’’
Returns native Tokyo Cabinet lookup triplets for given
backend-agnostic lookup triplet.
’’’
if isinstance(value, basestring):

return (
(name, proto.RDBQCSTREQ, value),

)
if isinstance(value, (int, float)):

return (
(name, proto.RDBQCNUMEQ, value),

)
raise ValueError

Now if you call lookup_manager.resolve(’age’, ’equals’, 99), the returned value will be
((’age’, proto.RDBCNUMEQ, 99),).

A single generic lookup may yield multiple native lookups because some backends do not support certain
lookups directly and therefore must translate them to a combination of elementary conditions. In most cases
resolve() will yield a single condition. Its format is determined by the query adapter.

exception_class
alias of LookupProcessorDoesNotExist

resolve(name, operation, value)
Returns a set of backend-specific conditions for given backend-agnostic triplet, e.g.:

(’age’, ’gt’, 90)

will be translated by the Tokyo Cabinet backend to:

(’age’, 9, ’90’)

or by the MongoDB backend to:

{’age’: {’$gt’: 90}}

exception doqu.backend_base.LookupProcessorDoesNotExist
This exception is raised when given backend does not support the requested lookup.

44 Chapter 7. API reference

Docu Documentation, Release 0.28.2

class doqu.backend_base.ConverterManager
An instance of this class can manage property processors for given backend. Processor classes must be registered
against Python types or classes. The processor manager allows encoding and decoding data between a document
class instance and a database record. Each backend supports only a certain subset of Python datatypes and has
its own rules in regard to how None values are interpreted, how complex data structures are serialized and so
on. Moreover, there’s no way to guess how a custom class should be processed. Therefore, each combination of
data type + backend has to be explicitly defined as a set of processing methods (to and from).

exception_class
alias of DataProcessorDoesNotExist

from_db(datatype, value)
Converts given value to given Python datatype. The value must be correctly pre-encoded by the symmet-
rical PropertyManager.to_db() method before saving it to the database.

Raises DataProcessorDoesNotExist if no suitable processor is defined by the backend.

to_db(value, storage)
Prepares given value and returns it in a form ready for storing in the database.

Raises DataProcessorDoesNotExist if no suitable processor is defined by the backend.

exception doqu.backend_base.DataProcessorDoesNotExist
This exception is raised when given backend does not have a datatype processor suitable for given value.

7.3. Backend API 45

Docu Documentation, Release 0.28.2

46 Chapter 7. API reference

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

47

Docu Documentation, Release 0.28.2

48 Chapter 8. Indices and tables

CHAPTER

NINE

AUTHOR

Originally written by Andrey Mikhaylenko since 2009.

See the file AUTHORS for a complete authors list of this application.

Please feel free to submit patches, report bugs or request features:

http://bitbucket.org/neithere/doqu/issues/

49

http://bitbucket.org/neithere/doqu/issues/

Docu Documentation, Release 0.28.2

50 Chapter 9. Author

CHAPTER

TEN

LICENSING

Doqu is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

Doqu is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with Doqu. If not, see
<http://gnu.org/licenses/>.

51

http://gnu.org/licenses/

Docu Documentation, Release 0.28.2

52 Chapter 10. Licensing

PYTHON MODULE INDEX

d
doqu.backend_base, 29
doqu.document_base, 27
doqu.ext.fields, 28
doqu.ext.forms, ??
doqu.ext.mongodb, ??
doqu.ext.shelve_db, 21
doqu.ext.shove_db, ??
doqu.ext.tokyo_cabinet, ??
doqu.ext.tokyo_tyrant, ??
doqu.utils, 18
doqu.validators, 13

53

	Installation
	Tutorial
	What does Doqu do?
	Why document-oriented?
	Why not just use the library X for database Y?
	What are ``backends''?
	Switching backends
	A few words on what a model is
	Working with documents
	More questions?
	Inheritance
	Model is a query, not a container

	Glossary
	Validators
	Utilities
	Extensions
	Database backends
	Convenience abstractions
	Integration with other libraries

	API reference
	Document API
	Document Fields
	Backend API

	Indices and tables
	Author
	Licensing
	Python Module Index

