

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Docu 0.28.2 documentation

Easy data modeling with Doqu

Doqu is a lightweight Python framework for document databases. It provides a
uniform API for modeling, validation and queries across various kinds of
storages.

It is not an ORM as it doesn’t map existing schemata to Python objects.
Instead, it lets you define schemata on a higher layer built upon a schema-less
storage (key/value or document-oriented). You define models as a valuable
subset of the whole database and work with only certain parts of existing
entities – the parts you need.

Topics:

	Installation

	Tutorial
	What does Doqu do?

	Why document-oriented?

	Why not just use the library X for database Y?

	What are “backends”?

	Switching backends

	A few words on what a model is

	Working with documents

	More questions?

	Inheritance

	Model is a query, not a container

	Glossary

	Validators

	Utilities

	Extensions
	Database backends

	Convenience abstractions

	Integration with other libraries

	API reference
	Document API

	Document Fields

	Backend API

Indices and tables

	Index

	Module Index

	Search Page

Author

Originally written by Andrey Mikhaylenko since 2009.

See the file AUTHORS for a complete authors list of this application.

Please feel free to submit patches, report bugs or request features:

http://bitbucket.org/neithere/doqu/issues/

Licensing

Doqu is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Doqu is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Doqu. If not, see <http://gnu.org/licenses/>.

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

Installation

As easy as it can be:

$ pip install doqu

Another way is to use the Mercurial repo:

$ hg clone http://bitbucket.org/neithere/doqu
$ cd doqu
$./setup.py install

You may also need to install some other libraries (see Extensions).

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

Tutorial

Warning

this document must be rewritten from scratch

What does Doqu do?

Why document-oriented?

Why not just use the library X for database Y?

Native Python bindings exist for most databases. It is preferable to use a
dedicated library if you are absolutely sure that your code will never be used
with another database. But there are two common use cases when Doqu is much
more preferable:

	prototyping: if you are unsure about which database fits your requirements
best and wish to test various databases against your code, just write your
code with Doqu and then try switching backends to see which performs best.
Then optimize the code for it.

	reusing the code: if you expect the module to be plugged into an application
with unpredictable settings, use Doqu.

Of course we are talking about document databases. For relational databases you
would use an ORM.

What are “backends”?

Warning

this section is out of date

Docu can be used with a multitude of databases providing a uniform API for
retrieving, storing, removing and searching of records. To couple Docu with
a database, a storage/query backend is needed.

A “backend” is a module that provides two classes: Storage and Query.
Both must conform to the basic specifications (see basic specs below).
Backends may not be able to implement all default methods; they may also
provide some extra methods.

The Storage class is an interface for the database. It allows
to add, read, create and update records by primary keys. You will not use this
class directly in your code.

The Query class is what you will talk
to when filtering objects of a model. There are no constraints on how the
search conditions should be represented. This is likely to cause some problems
when you switch from one backend to another. Some guidlines will be probably
defined to address the issue of portability. For now we try to ensure that all
default backends share the conventions defined by the Tokyo Tyrant backend.

Switching backends

Warning

this section is out of date

Let’s assume we have a Tokyo Cabinet database. You can choose the TC backend to
use the DB file directly or access the same file
through the manager. The first option is great
for development and some other cases where you would use SQLite; the second
option is important for most production environments where multiple connections
are expected. The good news is that there’s no more import and export,
dump/load sequences, create/alter/drop and friends. Having tested the
application against the database storage.tct with Cabinet backend, just run
ttserver storage.tct and switch the backend config.

Let’s create our application:

import docu
import settings
from models import Country, Person

storage = docu.get_storage(settings.DATABASE)

print Person.objects(storage) # prints all Person objects from DB

Now define settings for both backends (settings.py):

direct access to the database (simple, not scalable)
TOKYO_CABINET_DATABASE = {
 'backend': 'docu.ext.tokyo_cabinet',
 'kind': 'TABLE',
 'path': 'storage.tct',
}

access through the Tyrant manager (needs daemon, scalable)
TOKYO_TYRANT_DATABASE = {
 'backend': 'docu.ext.tokyo_tyrant',
 'host': 'localhost',
 'port': 1978,
}

this is the *only* line you need to change in order to change the backend
DATABASE = TOKYO_CABINET_DATABASE

A few words on what a model is

Warning

this section is out of date

First off, what is a model? Well, it’s something that represents an object. The
object can be stored in a database. We can fetch it from there, modify and push
back.

How is a model different from a Python dictionary then? Easy. Dictionaries know
nothing about where the data came from, what parts of it are important for us,
how the values should be converted to and fro, and how should the data be
validated before it is stored somewhere. A model of an apple does know what
properties should an object have to be a Proper Apple; what can be done the
apple so that it does not stop being a Proper Apple; and where does the apple
belong so it won’t be in the way when it isn’t needed anymore.

In other words, the model is an answer to questions what, where and how
about a document. And a dictionary is a document (or, more precisely, a
simple representation of the document in given environment).

Working with documents

Warning

this section is out of date

A document is basically a “dictionary on steroids”. Let’s create a
document:

>>> from docu import *
>>> document = Document(foo=123, bar='baz')
>>> document['foo']
123
>>> document['foo'] = 456

Well, any dictionary can do that. But wait:

>>> db = get_db(backend='docu.ext.shove')
>>> document.save(db)
'new-primary-key'
>>> Document.objects(db)
[<Document: instance>]
>>> fetched = Document.objects(db)[0]
>>> document == fetched
True
>>> fetched['bar']
'baz'

Aha, so Document supports persistence! Nice. By
the way, how about some syntactic sugar? Here:

class MyDoc(Document):
 use_dot_notation = True

That’s the same good old Document but with “dot notation” switched on. It
allows access to keys with __getattr__ as well as with __getitem__:

>>> my_doc = MyDoc(foo=123)
>>> my_doc.foo
123

Of course this will only work with alphanumeric keys.

Now let’s say we are going to make a little address book. We don’t want any
“foo” or “bar, just the relevant information. And the “foo” key should not be
allowed in such documents. Can we restrict the structure to
certain keys and data types? Let’s see:

class Person(Document):
 structure = {'name': unicode, 'email': unicode}

Great, now the names and values are controlled. The document will raise an
exception when someone, say, attempts to put a number instead of the email.

Note

Any built-in type will do; some classes are also accepted (like
datetime.date et al). Even Document instances are accepted: they are
interpreted as references. The exact set of supported types and classes is
defined per storage backend because the data must be (de)serialized. It is
possible to register custom converters in runtime.

(Note that the values can be None.) But what if we need to mark some fields
as required? Or what if the email is indeed a unicode string but its content
has nothing to do with RFC 5322? We need to prevent malformed data from being
saved into the database. That’s the daily job for validators:

from docu.validators import *

class Person(Document):
 structure = {
 'name': unicode,
 'email': unicode,
 }
 validators = {
 'name': [required()],
 'email': [optional(), email()],
 }

This will only allow correct data into the storage.

Note

At this point you may ask why are the definitions so verbose. Why not Field
classes à la Django? Well, they can be added on top of what’s described
here. Actually Docu ships with Document Fields so you can easily write:

class Person(Document):
 name = Field(unicode, required=True)
 email = EmailField() # this class is not implemented but can be

Why isn’t this approach used by default? Well, it turned out that such
classes introduce more problems than they solve. Too much magic, you know.
Also, they quickly become a name + clutter thing. Compact but unreadable.
So we adopted the MongoKit approach, i.e. semantic grouping of attributes.
And — guess what? — the document classes became much easier to
understand. Despite the definitions are a bit longer. And remember, it is
always possible to add syntax sugar, but it’s usually extremely hard to
remove it.

And now, surprise: validators do an extra favour for us! Look:

XXX an example of query; previously defined documents are not shown because
records are filtered by validators

More questions?

If you can’t find the answer to your questions on Docu in the documentation,
feel free to ask in the discussion group [http://groups.google.com/group/docu-users].

———— XXXXXXXXXX The part below is outdated —————-

The Document behaves Let’s
observe the object thoroughly and conclude that colour is an important
distinctive feature of this... um, sort of thing:

class Thing(Document):
 structure = {
 'colour': unicode
 }

Great, now that’s a model. It recognizes a property as significant. Now we
can compare, search and distinguish objects by colour (and its presence or
lack). Obviously, if colour is an applicable property for an object, then it
belongs to this model.

A more complete example which will look familiar to those who had ever used an
ORM (e.g. the Django one):

import datetime
from docu import *

class Country(Document):
 structure = {
 'name': unicode # any Python type; default is unicode
 }
 validators = {
 'type': [AnyOf(['country'])]
 }

 def __unicode__(self):
 return self['name']

class Person(Document):
 structure = {
 'first_name': unicode,
 'last_name': unicode,
 'gender': unicode,
 'birth_date': datetime.date,
 'birth_place': Country, # reference to another model
 }
 validators = {
 'first_name': [required()],
 'last_name': [required()],
 }
 use_dot_notation = True

 def __unicode__(self):
 return u'{first_name} {last_name}'.format(**self)

 @property
 def age(self):
 return (datetime.datetime.now().date() - self.birth_date).days / 365

The interesting part is the Meta subclass. It contains a must_have attribute
which actually binds the model to a subset of data in the storage.
{'first_name__exists': True} states that a data row/document/... must
have the field first_name defined (not necessarily non-empty). You can easily
define any other query conditions (currently with respect to the backend’s
syntax but we hope to unify things). When you create an empty model instance, it
will have all the “must haves” pre-filled if they are not complex lookups (e.g.
Country will have its type set to True, but we cannot do that with
Person‘s constraints).

Inheritance

Warning

this section is out of date

Let’s define another model:

class Woman(Person):
 class Meta:
 must_have = {'gender': 'female'}

Or even that one:

today = datetime.datetime.now()
day_16_years_back = now - datetime.timedelta(days=16*365)

class Child(Person):
 parent = Reference(Person)

 class Meta:
 must_have = {'birth_date__gte': day_16_years_back}

Note that our Woman or Child models are subclasses of Person model. They
inherit all attributes of Person. Moreover, Person‘s metaclass is inherited
too. The must_have dictionaries of Child and Woman models are merged
into the parent model’s dictionary, so when we query the database for records
described by the Woman model, we get all records that have first_name and
last_name defined and gender set to “female”. When we edit a Person
instance, we do not care about the parent attribute; we actually don’t even
have access to it.

Model is a query, not a container

Warning

this section is out of date

We can even deal with data described above without model inheritance. Consider
this valid model – LivingBeing:

class LivingBeing(Model):
 species = Property()
 birth_date = Property()

 class Meta:
 must_have = {'birth_date__exists': True}

The data described by LivingBeing overlaps the data described by Person.
Some people have their birth dates not deifined and Person allows that.
However, LivingBeing requires this attribute, so not all people will appear
in a query by this model. At the same time LivingBeing does not require names,
so anybody and anything, named or nameless, but ever born, is a “living being”.
Updating a record through any of these models will not touch data that the model
does not know. For instance, saving an entity as a LivingBeing will not remove
its name or parent, and working with it as a Child will neither expose nor
destroy the information about species.

These examples illustrate how models are more “views” than “schemata”.

Now let’s try these models with a Tokyo Cabinet database:

>>> db = docu.get_db(
... backend = 'docu.ext.tokyo_cabinet',
... path = 'test.tct'
...)
>>> guido = Person(first_name='Guido', last_name='van Rossum')
>>> guido
<Person Guido van Rossum>
>>> guido.first_name
Guido
>>> guido.birth_date = datetime.date(1960, 1, 31)
>>> guido.save(db) # returns the autogenerated primary key
'person_0'
>>> ppl_named_guido = Person.objects(db).where(first_name='Guido')
>>> ppl_named_guido
[<Person Guido van Rossum>]
>>> guido = ppl_named_guido[0]
>>> guido.age # calculated on the fly -- datetime conversion works
49
>>> guido.birth_place = Country(name='Netherlands')
>>> guido.save() # model instance already knows the storage it belongs to
'person_0'
>>> guido.birth_place
<Country Netherlands>
>>> Country.objects(db) # yep, it was saved automatically with Guido
[<Country Netherlands>]
>>> larry = Person(first_name='Larry', last_name='Wall')
>>> larry.save(db)
'person_2'
>>> Person.objects(db)
[<Person Guido van Rossum>, <Person Larry Wall>]

...and so on.

Note that relations are supported out of the box.

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

Glossary

	storage

	A place where data is stored. Provides a single namespace. Key/value
stores can be represented with a single storage object, some other
databases will require multiple storage objects (e.g. each “database”
of CouchDB or each “collection” of MongoDB). Docu does not use nested
namespaces because in document databases they mean nothing anyway.

Doqu offers a uniform API for different databases by providing
“storage adapters”. See Backend API for technical details and
Extensions for a list of adapters bundled with Docu.

	record

	A piece of data identified by an arbitrary unique primary key in a
storage. In key/value stores the body of the record will be
called “value” (usually serialized to a string); in other databases it
is called “document” (also serialized as JSON, BSON, etc.). To avoid
confusion we call all these things “records”. In Python the record is
represented as a dictionary of fields.

	field

	A named property of a record or document. Records are
actually containers for fields. There can be only one field with given
name in the same record/document.

	document

	An dictionary with metadata. Can be associated with a record in
a storage. The structure can be restricted by schema.
Optional validators determine how should the
document look before it can be saved into the storage, or what records
can be associated with documents of given class. Special behaviour can
abe added with methods of the Document subclass (see Document API).

The simplest document is just a dictionary with some metadata. The
metadata can be empty or contain information about where the document
comes from, what does its record look like, etc.

A document without schema or validators is equal to its record. A
document with schema is only equal to the record if they have the
same sets of fields and these fields are valid (i.e. have correct data
types and pass certain tests).

As you see, there is a difference between documents and records but
sometimes it’s very subtle.

	schema

	A mapping of field names to Python data types. Prescribes the structure
of a document.

	validator

	Contains a certain test. When associated with a field of a
document, determines whether given value is suitable for the
field and, therefore, whether the document is valid in general. An
invalid document cannot be saved to the storage. A validator
can also contribute to the document query. See
Validators for details on how this works.

	document query

	A query that yields all records within given
storage that can be associated with certain document. A
document without validators does not add any
conditions to the query, i.e. yields all records whatever structure
they have. Validators can require that some fields are present or pass
certain tests.

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

Validators

A validator simply takes an input and verifies it fulfills some criterion, such as
a maximum length for a string. If the validation fails, a
ValidationError is raised. This simple system allows chaining any
number of validators on fields.

The module is heavily inspired by (and partially ripped off from) the
WTForms [http://wtforms.simplecodes.com] validators. However, ours serve a bit different purpose. First,
error messages are not needed here (the errors will not be displayed to end
users). Second, these validators include query filtering capabilities.

Usage example:

class Person(Document):
 validators = {
 'first_name': [required(), length(min=2)],
 'age': [number_range(min=18)],
 }

This document will raise ValidationError if you attempt to save it
with wrong values. You can call Document.is_valid() to ensure everything is OK.

Now let’s query the database for all objects of Person:

Person.objects(db)

Doqu does not deal with tables or collections, it follows the DRY (Don’t
Repeat Yourself) principle and uses the same validators to determine what
database records belong to given document class. The schema defined above is
alone equivalent to the following query:

...where(first_name__exists=True, age__gte=18).where_not(first_name='')

This is actually the base query available as Person.objects(db).

Note

not all validators affect document-related queries. See detailed
documentation on each validator.

	
exception doqu.validators.StopValidation

	Causes the validation chain to stop.

If StopValidation is raised, no more validators in the validation chain are
called.

	
exception doqu.validators.ValidationError

	Raised when a validator fails to validate its input.

	
class doqu.validators.Email

	Validates an email address. Note that this uses a very primitive regular
expression and should only be used in instances where you later verify by
other means, such as email activation or lookups.

Adds conditions to the document-related queries: the field must match the
pattern.

	
doqu.validators.email

	alias of Email

	
class doqu.validators.EqualTo(name)

	Compares the values of two fields.

	Parameters:	name – The name of the other field to compare to.

	
doqu.validators.equal_to

	alias of EqualTo

	
class doqu.validators.Equals(other_value)

	Compares the value to another value.

	Parameters:	other_value – The other value to compare to.

Adds conditions to the document-related queries.

	
doqu.validators.equals

	alias of Equals

	
class doqu.validators.Exists

	Ensures given field exists in the record. This does not affect validation
of a document with pre-defined structure but does affect queries.

Adds conditions to the document-related queries.

	
doqu.validators.exists

	alias of Exists

	
class doqu.validators.IPAddress

	Validates an IP(v4) address.

Adds conditions to the document-related queries: the field must match the
pattern.

	
doqu.validators.ip_address

	alias of IPAddress

	
class doqu.validators.Length(min=None, max=None)

	Validates the length of a string.

	Parameters:	
	min – The minimum required length of the string. If not provided, minimum
length will not be checked.

	max – The maximum length of the string. If not provided, maximum length
will not be checked.

	
doqu.validators.length

	alias of Length

	
class doqu.validators.NumberRange(min=None, max=None)

	Validates that a number is of a minimum and/or maximum value, inclusive.
This will work with any comparable number type, such as floats and
decimals, not just integers.

	Parameters:	
	min – The minimum required value of the number. If not provided, minimum
value will not be checked.

	max – The maximum value of the number. If not provided, maximum value
will not be checked.

Adds conditions to the document-related queries.

	
doqu.validators.number_range

	alias of NumberRange

	
class doqu.validators.Optional

	Allows empty value (i.e. bool(value) == False) and terminates the
validation chain for this field (i.e. no more validators are applied to
it). Note that errors raised prior to this validator are not suppressed.

	
doqu.validators.optional

	alias of Optional

	
class doqu.validators.Required

	Requires that the value is not empty, i.e. bool(value) returns True.
The bool values can also be False (but not anything else).

Adds conditions to the document-related queries: the field must exist and
be not equal to an empty string.

	
doqu.validators.required

	alias of Required

	
class doqu.validators.Regexp(pattern, flags=0)

	Validates the field against a user provided regexp.

	Parameters:	
	regex – The regular expression string to use.

	flags – The regexp flags to use, for example re.IGNORECASE or re.UNICODE.

Note

the pattern must be provided as string because compiled patterns
cannot be used in database lookups.

Adds conditions to the document-related queries: the field must match the
pattern.

	
doqu.validators.regexp

	alias of Regexp

	
class doqu.validators.URL(require_tld=True)

	Simple regexp based url validation. Much like the email validator, you
probably want to validate the url later by other means if the url must
resolve.

	Parameters:	require_tld – If true, then the domain-name portion of the URL must contain a .tld
suffix. Set this to false if you want to allow domains like
localhost.

Adds conditions to the document-related queries: the field must match the
pattern.

	
doqu.validators.url

	alias of URL

	
class doqu.validators.AnyOf(choices)

	Compares the incoming data to a sequence of valid inputs.

	Parameters:	choices – A sequence of valid inputs.

Adds conditions to the document-related queries.

	
doqu.validators.any_of

	alias of AnyOf

	
class doqu.validators.NoneOf(choices)

	Compares the incoming data to a sequence of invalid inputs.

	Parameters:	choices – A sequence of invalid inputs.

Adds conditions to the document-related queries.

	
doqu.validators.none_of

	alias of NoneOf

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

Utilities

Various useful functions. Some can be imported from doqu.utils, some
are available directly at doqu.

These utilities are either stable and well-tested or possible changes in their
API are not considered harmful (i.e. they are marginal). Important functions
which design is likely to change or which lack proper tests are located in
doqu.future.

	
doqu.utils.dump_doc(self, raw=False, as_repr=False, align=True, keys=None, exclude=None)

	Returns a multi-line string with document keys and values nicely
formatted and aligned.

	Parameters:	
	raw – If True, uses “raw” values, as fetched from the database (note that
this will fail for unsaved documents). If not, the values are obtained
in the normal way, i.e. by __getitem__(). Default is False.

	align – If True, the keys and values are aligned into two columns of equal
width. If False, no padding is used. Default is True.

	keys – a list of document keys to show. By default all existing keys are
included.

	exclude – a list of keys to exclude. By default no keys are excluded.

	Prarm as_repr:	If True, uses repr() for values; if not, coerces them to Unicode.
Default if False.

	
doqu.utils.get_db(settings_dict=None, **settings_kwargs)

	Storage adapter factory. Expects path to storage backend module and
optional backend-specific settings. Returns storage adapter instance.
If required underlying library is not found, exception
pkg_resources.DistributionNotFound is raised with package name and
version as the message.

	Parameters:	backend – string, dotted path to a Doqu storage backend (e.g.
doqu.ext.tokyo_tyrant). See Extensions for a list of bundled backends
or Backend API for backend API reference.

Usage:

import doqu

db = doqu.get_db(backend='doqu.ext.shelve', path='test.db')

query = SomeDocument.objects(db)

Settings can be also passed as a dictionary:

SETTINGS = {
 'backend': 'doqu.ext.tokyo_cabinet',
 'path': 'test.tct',
}

db = doqu.get_db(SETTINGS)

The two methods can be combined to override certain settings:

db = doqu.get_db(SETTINGS, path='another_db.tct')

	
doqu.utils.camel_case_to_underscores(class_name)

	Returns a pretty readable name based on the class name. For example,
“SomeClass” is translated to “some_class”.

	
doqu.utils.load_fixture(path, db=None)

	Reads given file (assuming it is in a known format), loads it into given
storage adapter instance and returns that instance.

	Parameters:	
	path – absolute or relative path to the fixture file; user constructions
(“~/foo”) will be expanded.

	db – a storage adapter instance (its class must conform to the
BaseStorageAdapter API). If not provided, a
memory storage will be created.

Usage:

import doqu

db = doqu.load_fixture('account.csv')

query = SomeDocument.objects(db)

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

Extensions

Doqu ships with some batteries included.

Database backends

	Shelve extension

	Shove extension

	Tokyo Cabinet extension

	Tokyo Tyrant extension

	MongoDB extension

Convenience abstractions

	Document Fields

Integration with other libraries

	WTForms extension

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

 	Extensions

Shelve extension

A storage/query backend for shelve [http://docs.python.org/library/shelve.html] which is bundled with Python.

	status:	stable

	database:	any dbm-style database supported by shelve [http://docs.python.org/library/shelve.html]

	dependencies:	the Python standard library

	suitable for:	“smart” interface to a key/value store, small volume

A “shelf” is a persistent, dictionary-like object. The difference with “dbm”
databases is that the values (not the keys!) in a shelf can be essentially
arbitrary Python objects — anything that the pickle module can handle. This
includes most class instances, recursive data types, and objects containing
lots of shared sub-objects. The keys are ordinary strings.

This extension wraps the standard Python library and provides
Document support and uniform query API.

Note

The query methods are inefficient as they involve iterating over
the full set of records and making per-row comparison without indexing.
This backend is not suitable for applications that depend on queries and
require decent speed. However, it is an excellent tool for existing
DBM databases or for environments and cases where external dependencies are
not desired.

	
class doqu.ext.shelve_db.StorageAdapter(**kw)

	Provides unified Doqu API for MongoDB (see
doqu.backend_base.BaseStorageAdapter).

	Parameters:	path – relative or absolute path to the database file (e.g. test.db)

	
clear()

	Clears the whole storage from data, resets autoincrement counters.

	
connect()

	Connects to the database. Raises RuntimeError if the connection is
not closed yet. Use reconnect() to explicitly close the
connection and open it again.

	
delete(key)

	Deletes record with given primary key.

	
disconnect()

	Closes internal store and removes the reference to it. If the
backend works with a file, then all pending changes are saved now.

	
find(doc_class=<type 'dict'>, **conditions)

	Returns instances of given class, optionally filtered by given
conditions.

	Parameters:	
	doc_class – Document class. Default is dict. Normally you will want a more
advanced class, such as Document or
its more concrete subclasses (with explicit structure and
validators).

	conditions – key/value pairs, same as in where().

Note

By default this returns a tuple of (key, data_dict) per item.
However, this can be changed if doc_class provides the method
from_storage(). For example,
Document has the notion of “saved
state” so it can store the key within. Thus, only a single
Document object is returned per item.

	
get(key, doc_class=<type 'dict'>)

	Returns document instance for given document class and primary key.
Raises KeyError if there is no item with given key in the database.

	Parameters:	
	key – a numeric or string primary key (as supported by the backend).

	doc_class – a document class to wrap the data into. Default is dict.

	
get_many(keys, doc_class=<type 'dict'>)

	Returns an iterator of documents with primary keys from given list.
Basically this is just a simple wrapper around
get() but some backends can reimplement the
method in a much more efficient way.

	
get_or_create(doc_class=<type 'dict'>, **conditions)

	Queries the database for records associated with given document
class and conforming to given extra conditions. If such records exist,
picks the first one (the order may be random depending on the
database). If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

	
query_adapter

	alias of QueryAdapter

	
reconnect()

	Gracefully closes current connection (if it’s not broken) and
connects again to the database (e.g. reopens the file).

	
save(key, data)

	Saves given data with given primary key into the storage. Returns
the primary key.

	Parameters:	
	key – the primary key for given object; if None, will be generated.

	data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is
already in the database in order to update it instead of copying it.

	
sync()

	Synchronizes the storage to disk immediately if the backend supports
this operation. Normally the data is synchronized either on
save(), or on timeout, or on disconnect(). This is strictly
backend-specific. If a backend does not support the operation,
NotImplementedError is raised.

	
class doqu.ext.shelve_db.QueryAdapter(*args, **kw)

	The Query class.

	
count()

	Same as __len__ but a bit faster.

	
delete()

	Deletes all records that match current query.

	
order_by(names, reverse=False)

	Defines order in which results should be retrieved.

	Parameters:	
	names – the names of columns by which the ordering should be done. Can be
an iterable with strings or a single string.

	reverse – If True, direction changes from ascending (default) to
descending.

Examples:

q.order_by('name') # ascending
q.order_by('name', reverse=True) # descending

If multiple names are provided, grouping is done from left to right.

Note

while you can specify the direction of sorting, it is not possible
to do it on per-name basis due to backend limitations.

Warning

ordering implementation for this database is currently inefficient.

	
values(name)

	Returns an iterator that yields distinct values for given column
name.

Supports date parts (i.e. date__month=7).

Note

this is currently highly inefficient because the underlying library
does not support columns mode (tctdbiternext3). Moreover, even
current implementation can be optimized by removing the overhead of
creating full-blown document objects.

Note

unhashable values (like lists) are silently ignored.

	
where(**conditions)

	Returns Query instance filtered by given conditions.
The conditions are specified by backend’s underlying API.

	
where_not(**conditions)

	Returns Query instance. Inverted version of where().

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

 	Extensions

Shove extension

A storage/query backend for shove [http://pypi.python.org/pypi/shove] which is bundled with Python.

	status:	beta

	database:	any supported by shove [http://pypi.python.org/pypi/shove]: storage — Amazon S3 Web Service,
Berkeley Source Database, Filesystem, Firebird, FTP, DBM, Durus, Memory,
Microsoft SQL Server, MySQL, Oracle, PostgreSQL, SQLite, Subversion, Zope
Object Database (ZODB); caching — Filesystem, Firebird, memcached,
Memory, Microsoft SQL Server, MySQL, Oracle, PostgreSQL, SQLite

	dependencies:	shove [http://pypi.python.org/pypi/shove]

	suitable for:	“smart” interface to a key/value store; temporary memory storage

This extension wraps the shove library and provides the uniform query API
along with support for Document API.

Note

Regardless of the underlying storage, Shove serializes the records
and only offers access by primary key. This means that efficient queries
are impossible even with RDBMS; moreover, such databases are more likely to
perform slower than simple key/value stores. The Docu queries with Shove
involve iterating over the full set of records on client side and making
per-row comparison without proper indexing.

That said, the backend is considered not suitable for applications that
depend on queries and require decent speed of lookups by value. However, it
can be very useful as a memory storage (e.g. to analyze a JSON dump or
calculate some data on the fly) or as an improved interface to an existing
pure key/value storage which is mostly used without advanced queries.

	
class doqu.ext.shove_db.StorageAdapter(**kw)

	All parametres are optional. Here are the most common:

	Parameters:	
	store_uri – URI for the data store

	cache_uri – URI for the caching instance

The URI format for a backend is documented in its module (see the shove [http://pypi.python.org/pypi/shove]
documentation). The URI form is the same as SQLAlchemy’s [http://www.sqlalchemy.org/docs/04/dbengine.html#dbengine_establishing].

	
clear()

	Clears the whole storage from data, resets autoincrement counters.

	
connect()

	Connects to the database. Raises RuntimeError if the connection is
not closed yet. Use reconnect() to explicitly close the
connection and open it again.

	
delete(key)

	Deletes record with given primary key.

	
disconnect()

	Closes internal store and removes the reference to it. If the
backend works with a file, then all pending changes are saved now.

	
find(doc_class=<type 'dict'>, **conditions)

	Returns instances of given class, optionally filtered by given
conditions.

	Parameters:	
	doc_class – Document class. Default is dict. Normally you will want a more
advanced class, such as Document or
its more concrete subclasses (with explicit structure and
validators).

	conditions – key/value pairs, same as in where().

Note

By default this returns a tuple of (key, data_dict) per item.
However, this can be changed if doc_class provides the method
from_storage(). For example,
Document has the notion of “saved
state” so it can store the key within. Thus, only a single
Document object is returned per item.

	
get(key, doc_class=<type 'dict'>)

	Returns document instance for given document class and primary key.
Raises KeyError if there is no item with given key in the database.

	Parameters:	
	key – a numeric or string primary key (as supported by the backend).

	doc_class – a document class to wrap the data into. Default is dict.

	
get_many(keys, doc_class=<type 'dict'>)

	Returns an iterator of documents with primary keys from given list.
Basically this is just a simple wrapper around
get() but some backends can reimplement the
method in a much more efficient way.

	
get_or_create(doc_class=<type 'dict'>, **conditions)

	Queries the database for records associated with given document
class and conforming to given extra conditions. If such records exist,
picks the first one (the order may be random depending on the
database). If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

	
query_adapter

	alias of QueryAdapter

	
reconnect()

	Gracefully closes current connection (if it’s not broken) and
connects again to the database (e.g. reopens the file).

	
save(key, data)

	Saves given data with given primary key into the storage. Returns
the primary key.

	Parameters:	
	key – the primary key for given object; if None, will be generated.

	data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is
already in the database in order to update it instead of copying it.

	
sync()

	Synchronizes the storage to disk immediately if the backend supports
this operation. Normally the data is synchronized either on
save(), or on timeout, or on disconnect(). This is strictly
backend-specific. If a backend does not support the operation,
NotImplementedError is raised.

	
class doqu.ext.shove_db.QueryAdapter(*args, **kw)

	The Query class.

	
count()

	Same as __len__ but a bit faster.

	
delete()

	Deletes all records that match current query.

	
order_by(names, reverse=False)

	Defines order in which results should be retrieved.

	Parameters:	
	names – the names of columns by which the ordering should be done. Can be
an iterable with strings or a single string.

	reverse – If True, direction changes from ascending (default) to
descending.

Examples:

q.order_by('name') # ascending
q.order_by('name', reverse=True) # descending

If multiple names are provided, grouping is done from left to right.

Note

while you can specify the direction of sorting, it is not possible
to do it on per-name basis due to backend limitations.

Warning

ordering implementation for this database is currently inefficient.

	
values(name)

	Returns an iterator that yields distinct values for given column
name.

Supports date parts (i.e. date__month=7).

Note

this is currently highly inefficient because the underlying library
does not support columns mode (tctdbiternext3). Moreover, even
current implementation can be optimized by removing the overhead of
creating full-blown document objects.

Note

unhashable values (like lists) are silently ignored.

	
where(**conditions)

	Returns Query instance filtered by given conditions.
The conditions are specified by backend’s underlying API.

	
where_not(**conditions)

	Returns Query instance. Inverted version of where().

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

 	Extensions

Tokyo Cabinet extension

A storage/query backend for Tokyo Cabinet.

Allows direct access to the database and is thus extremely fast. However, it
locks the database and is therefore not suitable for environments where
concurrent access is required. Please use Tokyo Tyrant for such environments.

	status:	beta

	database:	Tokyo Cabinet [http://1978th.net/tokyocabinet]

	dependencies:	tokyo-python [http://pypi.python.org/pypi/tokyo-python/], pyrant [http://bitbucket.org/neithere/pyrant]

	suitable for:	general purpose, embedded

Warning

this module is not intended for production despite it may be stable. Bug
reports and patches are welcome.

Note

this module should not depend on Pyrant; just needs some refactoring.

Note

support for metasearch is planned.

Usage:

>>> import os
>>> import doqu
>>> DB_SETTINGS = {
... 'backend': 'doqu.ext.tokyo_cabinet',
... 'path': '_tc_test.tct',
... }
>>> assert not os.path.exists(DB_SETTINGS['path']), 'test database must not exist'
>>> db = doqu.get_db(DB_SETTINGS)
>>> class Person(doqu.Document):
... structure = {'name': unicode}
... def __unicode__(self):
... u'%(name)s' % self
...
>>> Person.objects(db) # the database is expected to be empty
[]
>>> db.connection['john'] = {'name': 'John'}
>>> mary = Person(name='Mary')
>>> mary_pk = mary.save(db)
>>> q = Person.objects(db)
>>> q
[<Person John>, <Person Mary>]
>>> q.where(name__matches='^J')
[<Person John>]
>>> q # the original query was not modified by the descendant
[<Person John>, <Person Mary>]
>>> db.connection.close()
>>> os.unlink(DB_SETTINGS['path'])

	
class doqu.ext.tokyo_cabinet.StorageAdapter(**kw)

	

	Parameters:	path – relative or absolute path to the database file (e.g. test.tct)

Note

Currently only table flavour of Tokyo Cabinet databases is supported.
It is uncertain whether it is worth supporting other flavours as they
do not provide query mechanisms other than access by primary key.

	
clear()

	Clears the whole storage from data, resets autoincrement counters.

	
connect()

	Connects to the database. Raises RuntimeError if the connection is
not closed yet. Use reconnect() to explicitly close the
connection and open it again.

	
delete(key)

	Deletes record with given primary key.

	
disconnect()

	Closes internal store and removes the reference to it. If the
backend works with a file, then all pending changes are saved now.

	
find(doc_class=<type 'dict'>, **conditions)

	Returns instances of given class, optionally filtered by given
conditions.

	Parameters:	
	doc_class – Document class. Default is dict. Normally you will want a more
advanced class, such as Document or
its more concrete subclasses (with explicit structure and
validators).

	conditions – key/value pairs, same as in where().

Note

By default this returns a tuple of (key, data_dict) per item.
However, this can be changed if doc_class provides the method
from_storage(). For example,
Document has the notion of “saved
state” so it can store the key within. Thus, only a single
Document object is returned per item.

	
get(key, doc_class=<type 'dict'>)

	Returns document instance for given document class and primary key.
Raises KeyError if there is no item with given key in the database.

	Parameters:	
	key – a numeric or string primary key (as supported by the backend).

	doc_class – a document class to wrap the data into. Default is dict.

	
get_many(keys, doc_class=<type 'dict'>)

	Returns an iterator of documents with primary keys from given list.
Basically this is just a simple wrapper around
get() but some backends can reimplement the
method in a much more efficient way.

	
get_or_create(doc_class=<type 'dict'>, **conditions)

	Queries the database for records associated with given document
class and conforming to given extra conditions. If such records exist,
picks the first one (the order may be random depending on the
database). If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

	
query_adapter

	alias of QueryAdapter

	
reconnect()

	Gracefully closes current connection (if it’s not broken) and
connects again to the database (e.g. reopens the file).

	
save(key, data)

	Saves given data with given primary key into the storage. Returns
the primary key.

	Parameters:	
	key – the primary key for given object; if None, will be generated.

	data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is
already in the database in order to update it instead of copying it.

	
sync()

	Synchronizes the storage to disk immediately if the backend supports
this operation. Normally the data is synchronized either on
save(), or on timeout, or on disconnect(). This is strictly
backend-specific. If a backend does not support the operation,
NotImplementedError is raised.

	
class doqu.ext.tokyo_cabinet.QueryAdapter(*args, **kw)

	The Query class.

	
count()

	Same as __len__ but without fetching the records (i.e. faster).

	
delete()

	Deletes all records that match current query.

	
order_by(names, reverse=False)

	Returns a query object with same conditions but with results sorted
by given field. By default the direction of sorting is ascending.

	Parameters:	
	names – list of strings: names of fields by which results should be sorted.
Some backends may only support a single field for sorting.

	reverse – bool: if True, the direction of sorting is reversed
and becomes descending. Default is False.

	
values(name)

	Returns an iterator that yields distinct values for given column name.

Note

this is currently highly inefficient because the underlying library
does not support columns mode (tctdbiternext3). Moreover, even
current implementation can be optimized by removing the overhead of
creating full-blown document objects (though preserving data type
is necessary).

	
where(**conditions)

	Returns Query instance filtered by given conditions.
The conditions are specified by backend’s underlying API.

	
where_not(**conditions)

	Returns Query instance. Inverted version of where().

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

 	Extensions

Tokyo Tyrant extension

A storage/query backend for Tokyo Tyrant.

	status:	stable

	database:	Tokyo Cabinet [http://1978th.net/tokyocabinet], Tokyo Tyrant [http://1978th.net/tokyotyrant]

	dependencies:	Pyrant [http://pypi.python.org/pypi/pyrant]

	suitable for:	general purpose

	
class doqu.ext.tokyo_tyrant.storage.StorageAdapter(**kw)

	
	
clear()

	Clears the whole storage from data, resets autoincrement counters.

	
connect()

	Connects to the database. Raises RuntimeError if the connection is
not closed yet. Use reconnect() to explicitly close the
connection and open it again.

	
delete(key)

	Deletes record with given primary key.

	
disconnect()

	Closes internal store and removes the reference to it. If the
backend works with a file, then all pending changes are saved now.

	
find(doc_class=<type 'dict'>, **conditions)

	Returns instances of given class, optionally filtered by given
conditions.

	Parameters:	
	doc_class – Document class. Default is dict. Normally you will want a more
advanced class, such as Document or
its more concrete subclasses (with explicit structure and
validators).

	conditions – key/value pairs, same as in where().

Note

By default this returns a tuple of (key, data_dict) per item.
However, this can be changed if doc_class provides the method
from_storage(). For example,
Document has the notion of “saved
state” so it can store the key within. Thus, only a single
Document object is returned per item.

	
get(key, doc_class=<type 'dict'>)

	Returns document instance for given document class and primary key.
Raises KeyError if there is no item with given key in the database.

	Parameters:	
	key – a numeric or string primary key (as supported by the backend).

	doc_class – a document class to wrap the data into. Default is dict.

	
get_many(keys, doc_class=<type 'dict'>)

	Returns an iterator of documents with primary keys from given list.
Basically this is just a simple wrapper around
get() but some backends can reimplement the
method in a much more efficient way.

	
get_or_create(doc_class=<type 'dict'>, **conditions)

	Queries the database for records associated with given document
class and conforming to given extra conditions. If such records exist,
picks the first one (the order may be random depending on the
database). If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

	
reconnect()

	Gracefully closes current connection (if it’s not broken) and
connects again to the database (e.g. reopens the file).

	
save(key, data)

	Saves given data with given primary key into the storage. Returns
the primary key.

	Parameters:	
	key – the primary key for given object; if None, will be generated.

	data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is
already in the database in order to update it instead of copying it.

	
sync()

	Synchronizes the storage to disk immediately if the backend supports
this operation. Normally the data is synchronized either on
save(), or on timeout, or on disconnect(). This is strictly
backend-specific. If a backend does not support the operation,
NotImplementedError is raised.

	
class doqu.ext.tokyo_tyrant.query.QueryAdapter(storage, doc_class)

	
	
count()

	Returns the number of records that match current query. Does not fetch
the records.

	
delete()

	Deletes all records that match current query.

	
order_by(names, reverse=False)

	Returns a query object with same conditions but with results sorted
by given field. By default the direction of sorting is ascending.

	Parameters:	
	names – list of strings: names of fields by which results should be sorted.
Some backends may only support a single field for sorting.

	reverse – bool: if True, the direction of sorting is reversed
and becomes descending. Default is False.

	
values(name)

	Returns a list of unique values for given column name.

	
where(**conditions)

	Returns Query instance filtered by given conditions.

	
where_not(**conditions)

	Returns Query instance. Inverted version of
where().

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

 	Extensions

MongoDB extension

A storage/query backend for MongoDB.

	status:	beta

	database:	MongoDB [http://mongodb.org]

	dependencies:	pymongo [http://api.mongodb.org/python]

	suitable for:	general purpose (mostly server-side)

Warning

this module is not intended for production. It contains some hacks and
should be refactored. However, it is actually used in a real project
involving complex queries. Patches, improvements, rewrites are welcome.

	
class doqu.ext.mongodb.StorageAdapter(**kw)

	

	Parameters:	
	host –

	port –

	database –

	collection –

	
clear()

	Clears the whole storage from data, resets autoincrement counters.

	
connect()

	Connects to the database. Raises RuntimeError if the connection is
not closed yet. Use reconnect() to explicitly close the
connection and open it again.

	
delete(key)

	Deletes record with given primary key.

	
disconnect()

	Closes internal store and removes the reference to it. If the
backend works with a file, then all pending changes are saved now.

	
find(doc_class=<type 'dict'>, **conditions)

	Returns instances of given class, optionally filtered by given
conditions.

	Parameters:	
	doc_class – Document class. Default is dict. Normally you will want a more
advanced class, such as Document or
its more concrete subclasses (with explicit structure and
validators).

	conditions – key/value pairs, same as in where().

Note

By default this returns a tuple of (key, data_dict) per item.
However, this can be changed if doc_class provides the method
from_storage(). For example,
Document has the notion of “saved
state” so it can store the key within. Thus, only a single
Document object is returned per item.

	
get(key, doc_class=<type 'dict'>)

	Returns document instance for given document class and primary key.
Raises KeyError if there is no item with given key in the database.

	Parameters:	
	key – a numeric or string primary key (as supported by the backend).

	doc_class – a document class to wrap the data into. Default is dict.

	
get_many(keys, doc_class=<type 'dict'>)

	Returns an iterator of documents with primary keys from given list.
Basically this is just a simple wrapper around
get() but some backends can reimplement the
method in a much more efficient way.

	
get_or_create(doc_class=<type 'dict'>, **conditions)

	Queries the database for records associated with given document
class and conforming to given extra conditions. If such records exist,
picks the first one (the order may be random depending on the
database). If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

	
reconnect()

	Gracefully closes current connection (if it’s not broken) and
connects again to the database (e.g. reopens the file).

	
save(key, data)

	Saves given data with given primary key into the storage. Returns
the primary key.

	Parameters:	
	key – the primary key for given object; if None, will be generated.

	data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is
already in the database in order to update it instead of copying it.

	
sync()

	Synchronizes the storage to disk immediately if the backend supports
this operation. Normally the data is synchronized either on
save(), or on timeout, or on disconnect(). This is strictly
backend-specific. If a backend does not support the operation,
NotImplementedError is raised.

	
class doqu.ext.mongodb.QueryAdapter(*args, **kw)

	
	
count()

	Returns the number of records that match given query. The result of
q.count() is exactly equivalent to the result of len(q) but does
not involve fetching of the records.

	
delete()

	Deletes all records that match current query.

	
order_by(names, reverse=False)

	Returns a query object with same conditions but with results sorted
by given field. By default the direction of sorting is ascending.

	Parameters:	
	names – list of strings: names of fields by which results should be sorted.
Some backends may only support a single field for sorting.

	reverse – bool: if True, the direction of sorting is reversed
and becomes descending. Default is False.

	
values(name)

	Returns a list of unique values for given field name.

	Parameters:	name – the field name.

Note

A set is dynamically build on client side if the query contains
conditions. If it doesn’t, a much more efficient approach is used.
It is only available within current connection, not query.

	
where(**conditions)

	Returns Query instance filtered by given conditions.
The conditions are specified by backend’s underlying API.

	
where_not(**conditions)

	Returns Query instance. Inverted version of where().

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

 	API reference

Document Fields

New in version 0.23.

Note

This abstraction is by no means a complete replacement for the normal
approach of semantic grouping. Please use it with care. Also note that the
API can change. The class can even be removed in future versions of Doqu.

	
class doqu.ext.fields.Field(datatype, essential=False, required=False, default=None, choices=None, label=None, pickled=False)

	Representation of a document property. Syntax sugar for separate
definitions of structure, validators, defaults and labels.

Usage:

class Book(Document):
 title = Field(unicode, required=True, default=u'Hi', label='Title')

this is just another way to type:

class Book(Document):
 structure = {
 'title': unicode
 }
 validators = {
 'title': [validators.Required()]
 }
 defaults = {
 'title': u'Hi'
 }
 labels = {
 'title': u'The Title'
 }

Nice, eh? But be careful: the title definition in the first example
barely fits its line. Multiple long definitions will turn your document
class into an opaque mess of characters, while the semantically grouped
definitions stay short and keep related things aligned together. “Semantic
sugar” is sometimes pretty bitter, use it with care.

Complex validators still need to be specified by hand in the relevant
dictionary. This can be worked around by creating specialized field classes
(e.g. EmailField) as it is done e.g. in Django.

	Parameters:	
	essential – if True, validator Exists is added (i.e. the
field may be empty but it must be present in the record).

	pickled – if True, the value is preprocessed with pickle’s dumps/loads functions.
This of course breaks lookups by this field but enables storing
arbitrary Python objects.

	
class doqu.ext.fields.FileField(base_path, **kwargs)

	Handles externally stored files.

Warning

This field saves the file when process_outgoing() is triggered
(see outgoing_processors in
DocumentMetadata).

Outdated (replaced) files are not automatically removed.

Usage:

class Doc(Document):
 attachment = FileField(base_path=MEDIA_ROOT+'attachments/')

d = Doc()
d.attachment = open('foo.txt')
d.save(db)

dd = Doc.objects(db)[0]
print dd.attachment.file.read()

	Parameters:	base_path – A string or callable: the directory where the files should be stored.

	
file_wrapper_class

	alias of FileWrapper

	
class doqu.ext.fields.ImageField(base_path, **kwargs)

	A FileField that provides extended support for images. The
ImageField.file is an ImageWrapper instance.

Usage:

class Photo(Document):
 summary = Field(unicode)
 image = ImageField(base_path='photos/')

p = Photo(summary='Fido', image=open('fido.jpg'))
p.save(db)

playing with image
print "The photo is {0}×{1}px".format(*p.image.size)
p.image.rotate(90)
p.image.save()

	
file_wrapper_class

	alias of ImageWrapper

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

 	Extensions

WTForms extension

Offers integration with WTForms [http://wtforms.simplecodes.com/].

	status:	beta

	dependencies:	wtforms [http://wtforms.simplecodes.com/]

The extension provides two new field classes: QuerySetSelectField and
DocumentSelectField (inspired by wtforms.ext.django.*). They connect
the forms with the Doqu API for queries. You can manually create forms with
these fields.

The easiest way to create a Document-compliant
form is using the function document_form_factory(). It returns a form
class based on the document structure:

from doqu import Document
from doqu import validators
from doqu.ext.forms import document_form_factory

class Location(Document):
 structure = {'name': unicode}

class Person(Document):
 structure = {'name': unicode, 'age': int, 'location': Location}
 labels = {'name': 'Full name', 'age': 'Age', 'location': 'Location'}
 validators = {'name': [required()]}

PersonForm = document_form_factory(Person)

The last line does the same as this code:

from wtforms import TextField, IntegerField, validators
from doqu.ext.forms import DocumentSelectField

class PersonForm(wtforms.Form):
 name = TextField('Full name', [validators.Required()])
 age = IntegerField('Age')
 location = DocumentSelectField('Location', [], Location)

	
doqu.ext.forms.document_form_factory(document_class, storage=None)

	Expects a Document instance, creates and
returns a wtforms.Form class for this model.

The form fields are selected depending on the Python type declared by each
property.

	Parameters:	
	document_class – the Doqu document class for which the form should be created

	storage – a Doqu-compatible storage; we need it to generate lists of choices
for references to other models. If not defined, references will not
appear in the form.

Caveat: the unicode type can be mapped to TextField and TextAreaField.
It is impossible to guess which one should be used unless maximum length is
defined for the property. TextAreaField is picked by default. It is a good
idea to automatically shrink it with JavaScript so that its size always
matches the contents.

	
class doqu.ext.forms.QuerySetSelectField(label=u'', validators=None, queryset=None, label_attr='', allow_blank=False, blank_text=u'', **kw)

	Given a QuerySet either at initialization or inside a view, will display a
select drop-down field of choices. The data property actually will
store/keep an ORM model instance, not the ID. Submitting a choice which is
not in the queryset will result in a validation error.

Specifying label_attr in the constructor will use that property of the
model instance for display in the list, else the model object’s __str__
or __unicode__ will be used.

If allow_blank is set to True, then a blank choice will be added to the
top of the list. Selecting this choice will result in the data property
being None. The label for the blank choice can be set by specifying the
blank_text parameter.

	
populate_obj(obj, name)

	Populates obj.<name> with the field’s data.

	Note :	This is a destructive operation. If obj.<name> already exists,
it will be overridden. Use with caution.

	
post_validate(form, validation_stopped)

	Override if you need to run any field-level validation tasks after
normal validation. This shouldn’t be needed in most cases.

	Parameters:	
	form – The form the field belongs to.

	validation_stopped – True if any validator raised StopValidation.

	
process(formdata, data=<object object at 0x22fe640>)

	Process incoming data, calling process_data, process_formdata as needed,
and run filters.

If data is not provided, process_data will be called on the field’s
default.

Field subclasses usually won’t override this, instead overriding the
process_formdata and process_data methods. Only override this for
special advanced processing, such as when a field encapsulates many
inputs.

	
process_data(value)

	Process the Python data applied to this field and store the result.

This will be called during form construction by the form’s kwargs or
obj argument.

	Parameters:	value – The python object containing the value to process.

	
validate(form, extra_validators=())

	Validates the field and returns True or False. self.errors will
contain any errors raised during validation. This is usually only
called by Form.validate.

Subfields shouldn’t override this, but rather override either
pre_validate, post_validate or both, depending on needs.

	Parameters:	
	form – The form the field belongs to.

	extra_validators – A list of extra validators to run.

	
class doqu.ext.forms.DocumentSelectField(label=u'', validators=None, document_class=None, storage=None, **kw)

	Like a QuerySetSelectField, except takes a document class instead of a
queryset and lists everything in it.

	
populate_obj(obj, name)

	Populates obj.<name> with the field’s data.

	Note :	This is a destructive operation. If obj.<name> already exists,
it will be overridden. Use with caution.

	
post_validate(form, validation_stopped)

	Override if you need to run any field-level validation tasks after
normal validation. This shouldn’t be needed in most cases.

	Parameters:	
	form – The form the field belongs to.

	validation_stopped – True if any validator raised StopValidation.

	
process(formdata, data=<object object at 0x22fe640>)

	Process incoming data, calling process_data, process_formdata as needed,
and run filters.

If data is not provided, process_data will be called on the field’s
default.

Field subclasses usually won’t override this, instead overriding the
process_formdata and process_data methods. Only override this for
special advanced processing, such as when a field encapsulates many
inputs.

	
process_data(value)

	Process the Python data applied to this field and store the result.

This will be called during form construction by the form’s kwargs or
obj argument.

	Parameters:	value – The python object containing the value to process.

	
validate(form, extra_validators=())

	Validates the field and returns True or False. self.errors will
contain any errors raised during validation. This is usually only
called by Form.validate.

Subfields shouldn’t override this, but rather override either
pre_validate, post_validate or both, depending on needs.

	Parameters:	
	form – The form the field belongs to.

	extra_validators – A list of extra validators to run.

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

API reference

	Document API

	Document Fields

	Backend API

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

 	API reference

Document API

Documents represent database records. Each document is a
(in)complete subset of fields contained in a record.
Available data types and query mechanisms are determined by the storage
in use.

The API was inspired by Django [http://djangoproject.com], MongoKit [http://pypi.python.org/pypi/mongokit/], WTForms [http://wtforms.simplecodes.com], Svarga [http://bitbucket.org/piranha/svarga/] and
several other projects. It was important to KISS (keep it simple, stupid), DRY
(do not repeat yourself) and to make the API as abstract as possible so that it
did not depend on backends and yet did not get in the way.

	
class doqu.document_base.Document(**kw)

	A document/query object. Dict-like representation of a document stored
in a database. Includes schema declaration, bi-directional validation
(outgoing and query), handles relations and has the notion of the saved
state, i.e. knows the storage and primary key of the corresponding record.

	
classmethod contribute_to_query(query)

	Returns given query filtered by schema and validators defined for
this document.

	
delete()

	Deletes the object from the associated storage.

	
classmethod from_storage(storage, key, data)

	Returns a document instance filled with given data and bound to given
storage and key. The instance can be safely saved back using
save(). If the concrete subclass defines the structure, then
usused fields coming from the storage are hidden from the public API
but nevertheless they will be saved back to the database as is.

	
pk

	Returns current primary key (if any) or None.

	
save(storage=None, keep_key=False)

	Saves instance to given storage.

	Parameters:	
	storage – the storage to which the document should be saved. If not
specified, default storage is used (the one from which the document
was retrieved of to which it this instance was saved before).

	keep_key – if True, the primary key is preserved even when saving to another
storage. This is potentially dangerous because existing unrelated
records can be overwritten. You will only need this when copying
a set of records that reference each other by primary key. Default
is False.

	
validate()

	Checks if instance data is valid. This involves a) checking whether all
values correspond to the declated structure, and b) running all
Validators against the data dictionary.

Raises ValidationError if something is wrong.

Note

if the data dictionary does not contain some items determined by
structure or validators, these items are not checked.

Note

The document is checked as is. There are no side effects. That is,
if some required values are empty, they will be considered invalid
even if default values are defined for them. The
save() method, however, fills in the default values
before validating.

	
doqu.document_base.Many

	alias of OneToManyRelation

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Docu 0.28.2 documentation

 	API reference

Document Fields

New in version 0.23.

Note

This abstraction is by no means a complete replacement for the normal
approach of semantic grouping. Please use it with care. Also note that the
API can change. The class can even be removed in future versions of Doqu.

	
class doqu.ext.fields.Field(datatype, essential=False, required=False, default=None, choices=None, label=None, pickled=False)

	Representation of a document property. Syntax sugar for separate
definitions of structure, validators, defaults and labels.

Usage:

class Book(Document):
 title = Field(unicode, required=True, default=u'Hi', label='Title')

this is just another way to type:

class Book(Document):
 structure = {
 'title': unicode
 }
 validators = {
 'title': [validators.Required()]
 }
 defaults = {
 'title': u'Hi'
 }
 labels = {
 'title': u'The Title'
 }

Nice, eh? But be careful: the title definition in the first example
barely fits its line. Multiple long definitions will turn your document
class into an opaque mess of characters, while the semantically grouped
definitions stay short and keep related things aligned together. “Semantic
sugar” is sometimes pretty bitter, use it with care.

Complex validators still need to be specified by hand in the relevant
dictionary. This can be worked around by creating specialized field classes
(e.g. EmailField) as it is done e.g. in Django.

	Parameters:	
	essential – if True, validator Exists is added (i.e. the
field may be empty but it must be present in the record).

	pickled – if True, the value is preprocessed with pickle’s dumps/loads functions.
This of course breaks lookups by this field but enables storing
arbitrary Python objects.

	
class doqu.ext.fields.FileField(base_path, **kwargs)

	Handles externally stored files.

Warning

This field saves the file when process_outgoing() is triggered
(see outgoing_processors in
DocumentMetadata).

Outdated (replaced) files are not automatically removed.

Usage:

class Doc(Document):
 attachment = FileField(base_path=MEDIA_ROOT+'attachments/')

d = Doc()
d.attachment = open('foo.txt')
d.save(db)

dd = Doc.objects(db)[0]
print dd.attachment.file.read()

	Parameters:	base_path – A string or callable: the directory where the files should be stored.

	
file_wrapper_class

	alias of FileWrapper

	
class doqu.ext.fields.ImageField(base_path, **kwargs)

	A FileField that provides extended support for images. The
ImageField.file is an ImageWrapper instance.

Usage:

class Photo(Document):
 summary = Field(unicode)
 image = ImageField(base_path='photos/')

p = Photo(summary='Fido', image=open('fido.jpg'))
p.save(db)

playing with image
print "The photo is {0}×{1}px".format(*p.image.size)
p.image.rotate(90)
p.image.save()

	
file_wrapper_class

	alias of ImageWrapper

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Docu 0.28.2 documentation

 	API reference

Backend API

Abstract classes for unified storage/query API with various backends.

Derivative classes are expected to be either complete implementations or
wrappers for external libraries. The latter is assumed to be a better solution
as Doqu is only one of the possible layers. It is always a good idea to
provide different levels of abstraction and let others combine them as needed.

The backends do not have to subclass BaseStorageAdapter and
BaseQueryAdapter. However, they must closely follow their API.

	
class doqu.backend_base.BaseStorageAdapter(**kw)

	Abstract adapter class for storage backends.

Note

Backends policy

If a public method foo() internally uses a private method _foo(),
then subclasses should only overload only the private attribute. This
ensures that docstring and signature are always correct. However, if
the backend introduces some deviations in behaviour or extends the
signature, the public method can (and should) be overloaded at least to
provide documentation.

	
clear()

	Clears the whole storage from data, resets autoincrement counters.

	
connect()

	Connects to the database. Raises RuntimeError if the connection is
not closed yet. Use reconnect() to explicitly close the
connection and open it again.

	
delete(key)

	Deletes record with given primary key.

	
disconnect()

	Closes internal store and removes the reference to it. If the
backend works with a file, then all pending changes are saved now.

	
find(doc_class=<type 'dict'>, **conditions)

	Returns instances of given class, optionally filtered by given
conditions.

	Parameters:	
	doc_class – Document class. Default is dict. Normally you will want a more
advanced class, such as Document or
its more concrete subclasses (with explicit structure and
validators).

	conditions – key/value pairs, same as in where().

Note

By default this returns a tuple of (key, data_dict) per item.
However, this can be changed if doc_class provides the method
from_storage(). For example,
Document has the notion of “saved
state” so it can store the key within. Thus, only a single
Document object is returned per item.

	
get(key, doc_class=<type 'dict'>)

	Returns document instance for given document class and primary key.
Raises KeyError if there is no item with given key in the database.

	Parameters:	
	key – a numeric or string primary key (as supported by the backend).

	doc_class – a document class to wrap the data into. Default is dict.

	
get_many(keys, doc_class=<type 'dict'>)

	Returns an iterator of documents with primary keys from given list.
Basically this is just a simple wrapper around
get() but some backends can reimplement the
method in a much more efficient way.

	
get_or_create(doc_class=<type 'dict'>, **conditions)

	Queries the database for records associated with given document
class and conforming to given extra conditions. If such records exist,
picks the first one (the order may be random depending on the
database). If there are no such records, creates one.

Returns the document instance and a boolean value “created”.

	
reconnect()

	Gracefully closes current connection (if it’s not broken) and
connects again to the database (e.g. reopens the file).

	
save(key, data)

	Saves given data with given primary key into the storage. Returns
the primary key.

	Parameters:	
	key – the primary key for given object; if None, will be generated.

	data – a dict containing all properties to be saved.

Note that you must provide current primary key for a record which is
already in the database in order to update it instead of copying it.

	
sync()

	Synchronizes the storage to disk immediately if the backend supports
this operation. Normally the data is synchronized either on
save(), or on timeout, or on disconnect(). This is strictly
backend-specific. If a backend does not support the operation,
NotImplementedError is raised.

	
class doqu.backend_base.BaseQueryAdapter(storage, doc_class)

	Query adapter for given backend.

	
count()

	Returns the number of records that match given query. The result of
q.count() is exactly equivalent to the result of len(q). The
implementation details do not differ by default, but it is recommended
that the backends stick to the following convention:

	__len__ executes the query, retrieves all matching records and
tests the length of the resulting list;

	count executes a special query that only returns a single value:
the number of matching records.

Thus, __len__ is more suitable when you are going to iterate the
records anyway (and do no extra queries), while count is better when
you just want to check if the records exist, or to only use a part of
matching records (i.e. a slice).

	
delete()

	Deletes all records that match current query.

	
order_by(names, reverse=False)

	Returns a query object with same conditions but with results sorted
by given field. By default the direction of sorting is ascending.

	Parameters:	
	names – list of strings: names of fields by which results should be sorted.
Some backends may only support a single field for sorting.

	reverse – bool: if True, the direction of sorting is reversed
and becomes descending. Default is False.

	
values(name)

	Returns a list of unique values for given field name.

	Parameters:	name – the field name.

	
where(**conditions)

	Returns Query instance filtered by given conditions.
The conditions are specified by backend’s underlying API.

	
where_not(**conditions)

	Returns Query instance. Inverted version of where().

	
exception doqu.backend_base.ProcessorDoesNotExist

	This exception is raised when given backend does not have a processor
suitable for given value. Usually you will need to catch a subclass of this
exception.

	
class doqu.backend_base.LookupManager

	Usage:

lookup_manager = LookupManager()

@lookup_manager.register('equals', default=True) # only one lookup can be default
def exact_match(name, value):
 '''
 Returns native Tokyo Cabinet lookup triplets for given
 backend-agnostic lookup triplet.
 '''
 if isinstance(value, basestring):
 return (
 (name, proto.RDBQCSTREQ, value),
)
 if isinstance(value, (int, float)):
 return (
 (name, proto.RDBQCNUMEQ, value),
)
 raise ValueError

Now if you call lookup_manager.resolve('age', 'equals', 99), the
returned value will be (('age', proto.RDBCNUMEQ, 99),).

A single generic lookup may yield multiple native lookups because some
backends do not support certain lookups directly and therefore must
translate them to a combination of elementary conditions. In most cases
resolve() will yield a single condition. Its format is
determined by the query adapter.

	
exception_class

	alias of LookupProcessorDoesNotExist

	
resolve(name, operation, value)

	Returns a set of backend-specific conditions for given
backend-agnostic triplet, e.g.:

('age', 'gt', 90)

will be translated by the Tokyo Cabinet backend to:

('age', 9, '90')

or by the MongoDB backend to:

{'age': {'$gt': 90}}

	
exception doqu.backend_base.LookupProcessorDoesNotExist

	This exception is raised when given backend does not support the
requested lookup.

	
class doqu.backend_base.ConverterManager

	An instance of this class can manage property processors for given
backend. Processor classes must be registered against Python types or
classes. The processor manager allows encoding and decoding data between a
document class instance and a database record. Each backend supports only a
certain subset of Python datatypes and has its own rules in regard to how
None values are interpreted, how complex data structures are serialized
and so on. Moreover, there’s no way to guess how a custom class should be
processed. Therefore, each combination of data type + backend has to be
explicitly defined as a set of processing methods (to and from).

	
exception_class

	alias of DataProcessorDoesNotExist

	
from_db(datatype, value)

	Converts given value to given Python datatype. The value must be
correctly pre-encoded by the symmetrical PropertyManager.to_db()
method before saving it to the database.

Raises DataProcessorDoesNotExist if no suitable processor is
defined by the backend.

	
to_db(value, storage)

	Prepares given value and returns it in a form ready for storing in
the database.

Raises DataProcessorDoesNotExist if no suitable processor is
defined by the backend.

	
exception doqu.backend_base.DataProcessorDoesNotExist

	This exception is raised when given backend does not have a datatype
processor suitable for given value.

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	Docu 0.28.2 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 doqu	

 	
 	
 doqu.backend_base	

 	
 	
 doqu.document_base	

 	
 	
 doqu.ext.fields	

 	
 	
 doqu.ext.forms	

 	
 	
 doqu.ext.mongodb	

 	
 	
 doqu.ext.shelve_db	

 	
 	
 doqu.ext.shove_db	

 	
 	
 doqu.ext.tokyo_cabinet	

 	
 	
 doqu.ext.tokyo_tyrant	

 	
 	
 doqu.utils	

 	
 	
 doqu.validators	

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	Docu 0.28.2 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	any_of (in module doqu.validators)

 	

 	AnyOf (class in doqu.validators)

B

 	

 	BaseQueryAdapter (class in doqu.backend_base)

 	

 	BaseStorageAdapter (class in doqu.backend_base)

C

 	

 	camel_case_to_underscores() (in module doqu.utils)

 	clear() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

 	connect() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

 	

 	contribute_to_query() (doqu.document_base.Document class method)

 	ConverterManager (class in doqu.backend_base)

 	count() (doqu.backend_base.BaseQueryAdapter method)

 	

 	(doqu.ext.mongodb.QueryAdapter method)

 	(doqu.ext.shelve_db.QueryAdapter method)

 	(doqu.ext.shove_db.QueryAdapter method)

 	(doqu.ext.tokyo_cabinet.QueryAdapter method)

 	(doqu.ext.tokyo_tyrant.query.QueryAdapter method)

D

 	

 	DataProcessorDoesNotExist

 	delete() (doqu.backend_base.BaseQueryAdapter method)

 	

 	(doqu.backend_base.BaseStorageAdapter method)

 	(doqu.document_base.Document method)

 	(doqu.ext.mongodb.QueryAdapter method)

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.QueryAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.QueryAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.QueryAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.query.QueryAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

 	disconnect() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

 	document

 	Document (class in doqu.document_base)

 	document query

 	document_form_factory() (in module doqu.ext.forms)

 	DocumentSelectField (class in doqu.ext.forms)

 	doqu.backend_base (module)

 	doqu.document_base (module)

 	

 	doqu.ext.fields (module)

 	doqu.ext.forms (module)

 	doqu.ext.mongodb (module)

 	doqu.ext.shelve_db (module)

 	doqu.ext.shove_db (module)

 	doqu.ext.tokyo_cabinet (module)

 	doqu.ext.tokyo_tyrant (module)

 	doqu.utils (module)

 	doqu.validators (module)

 	dump_doc() (in module doqu.utils)

E

 	

 	Email (class in doqu.validators)

 	email (in module doqu.validators)

 	equal_to (in module doqu.validators)

 	Equals (class in doqu.validators)

 	equals (in module doqu.validators)

 	

 	EqualTo (class in doqu.validators)

 	exception_class (doqu.backend_base.ConverterManager attribute)

 	

 	(doqu.backend_base.LookupManager attribute)

 	Exists (class in doqu.validators)

 	exists (in module doqu.validators)

F

 	

 	field

 	Field (class in doqu.ext.fields)

 	file_wrapper_class (doqu.ext.fields.FileField attribute)

 	

 	(doqu.ext.fields.ImageField attribute)

 	FileField (class in doqu.ext.fields)

 	

 	find() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

 	from_db() (doqu.backend_base.ConverterManager method)

 	from_storage() (doqu.document_base.Document class method)

G

 	

 	get() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

 	get_db() (in module doqu.utils)

 	

 	get_many() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

 	get_or_create() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

I

 	

 	ImageField (class in doqu.ext.fields)

 	ip_address (in module doqu.validators)

 	

 	IPAddress (class in doqu.validators)

L

 	

 	Length (class in doqu.validators)

 	length (in module doqu.validators)

 	load_fixture() (in module doqu.utils)

 	

 	LookupManager (class in doqu.backend_base)

 	LookupProcessorDoesNotExist

M

 	

 	Many (in module doqu.document_base)

N

 	

 	none_of (in module doqu.validators)

 	NoneOf (class in doqu.validators)

 	

 	number_range (in module doqu.validators)

 	NumberRange (class in doqu.validators)

O

 	

 	Optional (class in doqu.validators)

 	optional (in module doqu.validators)

 	

 	order_by() (doqu.backend_base.BaseQueryAdapter method)

 	

 	(doqu.ext.mongodb.QueryAdapter method)

 	(doqu.ext.shelve_db.QueryAdapter method)

 	(doqu.ext.shove_db.QueryAdapter method)

 	(doqu.ext.tokyo_cabinet.QueryAdapter method)

 	(doqu.ext.tokyo_tyrant.query.QueryAdapter method)

P

 	

 	pk (doqu.document_base.Document attribute)

 	populate_obj() (doqu.ext.forms.DocumentSelectField method)

 	

 	(doqu.ext.forms.QuerySetSelectField method)

 	post_validate() (doqu.ext.forms.DocumentSelectField method)

 	

 	(doqu.ext.forms.QuerySetSelectField method)

 	

 	process() (doqu.ext.forms.DocumentSelectField method)

 	

 	(doqu.ext.forms.QuerySetSelectField method)

 	process_data() (doqu.ext.forms.DocumentSelectField method)

 	

 	(doqu.ext.forms.QuerySetSelectField method)

 	ProcessorDoesNotExist

Q

 	

 	query_adapter (doqu.ext.shelve_db.StorageAdapter attribute)

 	

 	(doqu.ext.shove_db.StorageAdapter attribute)

 	(doqu.ext.tokyo_cabinet.StorageAdapter attribute)

 	QueryAdapter (class in doqu.ext.mongodb)

 	

 	(class in doqu.ext.shelve_db)

 	(class in doqu.ext.shove_db)

 	(class in doqu.ext.tokyo_cabinet)

 	(class in doqu.ext.tokyo_tyrant.query)

 	

 	QuerySetSelectField (class in doqu.ext.forms)

R

 	

 	reconnect() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

 	record

 	Regexp (class in doqu.validators)

 	regexp (in module doqu.validators)

 	

 	Required (class in doqu.validators)

 	required (in module doqu.validators)

 	resolve() (doqu.backend_base.LookupManager method)

S

 	

 	save() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.document_base.Document method)

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

 	schema

 	StopValidation

 	

 	storage

 	StorageAdapter (class in doqu.ext.mongodb)

 	

 	(class in doqu.ext.shelve_db)

 	(class in doqu.ext.shove_db)

 	(class in doqu.ext.tokyo_cabinet)

 	(class in doqu.ext.tokyo_tyrant.storage)

 	sync() (doqu.backend_base.BaseStorageAdapter method)

 	

 	(doqu.ext.mongodb.StorageAdapter method)

 	(doqu.ext.shelve_db.StorageAdapter method)

 	(doqu.ext.shove_db.StorageAdapter method)

 	(doqu.ext.tokyo_cabinet.StorageAdapter method)

 	(doqu.ext.tokyo_tyrant.storage.StorageAdapter method)

T

 	

 	to_db() (doqu.backend_base.ConverterManager method)

U

 	

 	URL (class in doqu.validators)

 	

 	url (in module doqu.validators)

V

 	

 	validate() (doqu.document_base.Document method)

 	

 	(doqu.ext.forms.DocumentSelectField method)

 	(doqu.ext.forms.QuerySetSelectField method)

 	ValidationError

 	

 	validator

 	values() (doqu.backend_base.BaseQueryAdapter method)

 	

 	(doqu.ext.mongodb.QueryAdapter method)

 	(doqu.ext.shelve_db.QueryAdapter method)

 	(doqu.ext.shove_db.QueryAdapter method)

 	(doqu.ext.tokyo_cabinet.QueryAdapter method)

 	(doqu.ext.tokyo_tyrant.query.QueryAdapter method)

W

 	

 	where() (doqu.backend_base.BaseQueryAdapter method)

 	

 	(doqu.ext.mongodb.QueryAdapter method)

 	(doqu.ext.shelve_db.QueryAdapter method)

 	(doqu.ext.shove_db.QueryAdapter method)

 	(doqu.ext.tokyo_cabinet.QueryAdapter method)

 	(doqu.ext.tokyo_tyrant.query.QueryAdapter method)

 	

 	where_not() (doqu.backend_base.BaseQueryAdapter method)

 	

 	(doqu.ext.mongodb.QueryAdapter method)

 	(doqu.ext.shelve_db.QueryAdapter method)

 	(doqu.ext.shove_db.QueryAdapter method)

 	(doqu.ext.tokyo_cabinet.QueryAdapter method)

 	(doqu.ext.tokyo_tyrant.query.QueryAdapter method)

 Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Docu 0.28.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Andrey Mikhaylenko.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

